Moroccan Team Selection Test 2011

www.artofproblemsolving.com/community/c65558
by tchebytchev, orl, Martin N., Amir Hossein

- Day 1

1 Prove that for any n natural, the number

$$
\sum_{k=0}^{n}\binom{2 n+1}{2 k+1} 2^{3 k}
$$

cannot be divided by 5 .
2 For positive integers m and n, find the smalles possible value of $\left|2011^{m}-45^{n}\right|$.
(Swiss Mathematical Olympiad, Final round, problem 3)
3 For a given triangle $A B C$, let X be a variable point on the line $B C$ such that C lies between B and X and the incircles of the triangles $A B X$ and $A C X$ intersect at two distinct points P and Q. Prove that the line $P Q$ passes through a point independent of X.

- Day 2

1 Find all pairs (m, n) of nonnegative integers for which

$$
m^{2}+2 \cdot 3^{n}=m\left(2^{n+1}-1\right) .
$$

Proposed by Angelo Di Pasquale, Australia

2 Let x_{1}, \ldots, x_{100} be nonnegative real numbers such that $x_{i}+x_{i+1}+x_{i+2} \leq 1$ for all $i=1, \ldots, 100$ (we put $x_{101}=x_{1}, x_{102}=x_{2}$). Find the maximal possible value of the sum $S=\sum_{i=1}^{100} x_{i} x_{i+2}$.

Proposed by Sergei Berlov, Ilya Bogdanov, Russia
3 The vertices X, Y, Z of an equilateral triangle $X Y Z$ lie respectively on the sides $B C, C A, A B$ of an acute-angled triangle $A B C$. Prove that the incenter of triangle $A B C$ lies inside triangle $X Y Z$.

Proposed by Nikolay Beluhov, Bulgaria

