AoPS Community

Azerbaijan Team Selection Test 2016

www.artofproblemsolving.com/community/c660051
by IstekOlympiadTeam, va2010, ABCDE

Day 1 May 19th

1 Tangents from the point A to the circle Γ touche this circle at C and D.Let B be a point on Γ,different from C and D. The circle ω that passes through points A and B intersect with lines $A C$ and $A D$ at F and E,respectively. Prove that the circumcircles of triangles $A B C$ and $D E B$ are tangent if and only if the points C, D, F and E are cyclic.

2 Find all polynomials $P(x)$ with real coefficents, such that for all x, y, z satisfying $x+y+z=0$, the equation below is true:

$$
P(x+y)^{3}+P(y+z)^{3}+P(z+x)^{3}=3 P((x+y)(y+z)(z+x))
$$

Day 2 May 20th

1 Determine all positive integers M such that the sequence $a_{0}, a_{1}, a_{2}, \ldots$ defined by

$$
a_{0}=M+\frac{1}{2} \quad \text { and } \quad a_{k+1}=a_{k}\left\lfloor a_{k}\right\rfloor \quad \text { for } k=0,1,2, \cdots
$$

contains at least one integer term.
2 Let $A B C$ be a triangle with $\angle C=90^{\circ}$, and let H be the foot of the altitude from C. A point D is chosen inside the triangle $C B H$ so that $C H$ bisects $A D$. Let P be the intersection point of the lines $B D$ and $C H$. Let ω be the semicircle with diameter $B D$ that meets the segment $C B$ at an interior point. A line through P is tangent to ω at Q. Prove that the lines $C Q$ and $A D$ meet on ω.
$3 \quad$ Prove that there does not exist a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
f(f(x)+y)=f(x)+3 x+y f(y)
$$

for all positive reals x, y.
Day 3 May 21st
1 Suppose that a sequence a_{1}, a_{2}, \ldots of positive real numbers satisfies

$$
a_{k+1} \geq \frac{k a_{k}}{a_{k}^{2}+(k-1)}
$$

for every positive integer k. Prove that $a_{1}+a_{2}+\ldots+a_{n} \geq n$ for every $n \geq 2$.
2 A positive interger n is called rising if its decimal representation $a_{k} a_{k-1} \cdots a_{0}$ satisfies the condition $a_{k} \leq a_{k-1} \leq \cdots \leq a_{0}$. Polynomial P with real coefficents is called interger-valued if for all integer numbers $n, P(n)$ takes interger values. $P(n)$ is called rising-valued if for all rising numbers $n, P(n)$ takes integer values.
Does it necessarily mean that, "every rising-valued P is also interger-valued P "?
3 During a day 2016 customers visited the store. Every customer has been only once at the store(a customer enters the store,spends some time, and leaves the store). Find the greatest integer k that makes the following statement always true.
We can find k customers such that either all of them have been at the store at the same time, or any two of them have not been at the same store at the same time.

