Art of Problem Solving

AoPS Community

Azerbaijan Team Selection Test 2017

www.artofproblemsolving.com/community/c660052
by IstekOlympiadTeam, cjquines0, mathwizard888, GGPiku

Day 1 May 13rd

1 Find all positive integers n for which all positive divisors of n can be put into the cells of a rectangular table under the following constraints:
-each cell contains a distinct divisor;
-the sums of all rows are equal; and
-the sums of all columns are equal.
2 Let $A B C$ be a triangle with $A B=A C \neq B C$ and let I be its incentre. The line $B I$ meets $A C$ at D, and the line through D perpendicular to $A C$ meets $A I$ at E. Prove that the reflection of I in $A C$ lies on the circumcircle of triangle $B D E$.
$3 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x+y f\left(x^{2}\right)\right)=f(x)+x f(x y)
$$

for all real numbers x and y.
Day 2 May 14th
1 Let $A B C$ be an acute angled triangle. Points E and F are chosen on the sides $A C$ and $A B$, respectively, such that

$$
B C^{2}=B A \times B F+C E \times C A .
$$

Prove that for all such E and F, circumcircle of the triangle $A E F$ passes through a fixed point different from A.

3 Consider fractions $\frac{a}{b}$ where a and b are positive integers.
(a) Prove that for every positive integer n, there exists such a fraction $\frac{a}{b}$ such that $\sqrt{n} \leq \frac{a}{b} \leq$ $\sqrt{n+1}$ and $b \leq \sqrt{n}+1$.
(b) Show that there are infinitely many positive integers n such that no such fraction $\frac{a}{b}$ satisfies $\sqrt{n} \leq \frac{a}{b} \leq \sqrt{n+1}$ and $b \leq \sqrt{n}$.

Day 1 May 15th

1 Consider the sequence of rational numbers defined by $x_{1}=\frac{4}{3}$, and $x_{n+1}=\frac{x_{n}^{2}}{x_{n}^{2}-x_{n}+1}$. Show that the nu,erator of the lowest term expression of each sum $x_{1}+x_{2}+\ldots+x_{k}$ is a perfect square.

2 Let n, m, k and l be positive integers with $n \neq 1$ such that $n^{k}+m n^{l}+1$ divides $n^{k+l}-1$. Prove that
$-m=1$ and $l=2 k$; or
$-l \mid k$ and $m=\frac{n^{k-l}-1}{n^{l}-1}$.
3 Let n be a positive integer relatively prime to 6 . We paint the vertices of a regular n-gon with three colours so that there is an odd number of vertices of each colour. Show that there exists an isosceles triangle whose three vertices are of different colours.

