Art of Problem Solving

AoPS Community

Olympic Revenge 2018

www.artofproblemsolving.com/community/c673910
by LittleGlequius

1 Let $\left(F_{n}\right)_{n \geq 1}$ the Fibonacci sequence. Find all $n \in \mathbb{N}$ such that for every $k=0,1, \ldots, F_{n}$

$$
\binom{F_{n}}{k} \equiv(-1)^{k}\left(\bmod F_{n}+1\right)
$$

2 Let $\triangle A B C$ a scalene triangle with incenter I, circumcenter O and circumcircle Γ. The incircle of $\triangle A B C$ is tangent to $B C, C A$ and $A B$ at points D, E and F, respectively. The line $A I$ meet $E F$ and Γ at N and $M \neq A$, respectively. $M D$ meet Γ at $L \neq M$ and $I L$ meet $E F$ at K. The circumference of diameter $M N$ meet Γ at $P \neq M$. Prove that $A K, P N$ and $O I$ are concurrent.

3 In a mathematical challenge, positive real numbers $a_{1} \geq a_{2} \geq \ldots \geq a_{n}$ and an initial sequence of positive real numbers $\left(b_{1}, b_{2}, \ldots, b_{n+1}\right)$ are given to Secco. Let C a non-negative real number. In a sequence ($x_{1}, x_{2}, \ldots, x_{n+1}$), consider the following operation:
Subtract 1 of some $x_{j}, j \in\{1,2, \ldots, n+1\}$, add C to x_{n+1} and replace $\left(x_{1}, x_{2}, \ldots, x_{j-1}\right)$ for $\left(x_{1}+a_{\sigma(1)}, x_{2}+a_{\sigma(2)}, \ldots, x_{j-1}+a_{\sigma(j-1)}\right)$, where σ is a permutation of $(1,2, \ldots, j-1)$.
Secco's goal is to make all terms of sequence (b_{k}) negative after a finite number of operations. Find all values of C, depending of $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n+1}$, for which Secco can attain his goal.

4 Let $\triangle A B C$ an acute triangle of incenter I and incircle $\omega . \omega$ is tangent to $B C, C A$ and $A B$ at points T_{A}, T_{B} and T_{C}, respectively. Let l_{A} the line through A and parallel to $B C$ and define l_{B} and l_{C} analogously. Let L_{A} the second intersection point of $A I$ with the circumcircle of $\triangle A B C$ and define L_{B} and L_{C} analogously. Let $P_{A}=T_{B} T_{C} \cap l_{A}$ and define P_{B} and P_{C} analogously. Let $S_{A}=P_{B} T_{B} \cap P_{C} T_{C}$ and define S_{B} and S_{C} analogously. Prove that $S_{A} L_{A}, S_{B} L_{B}, S_{C} L_{C}$ are concurrent.
$5 \quad$ Let p a positive prime number and \mathbb{F}_{p} the set of integers $\bmod p$. For $x \in \mathbb{F}_{p}$, define $|x|$ as the cyclic distance of x to 0 , that is, if we represent x as an integer between 0 and $p-1,|x|=x$ if $x<\frac{p}{2}$, and $|x|=p-x$ if $x>\frac{p}{2}$. Let $f: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ a function such that for every $x, y \in \mathbb{F}_{p}$

$$
|f(x+y)-f(x)-f(y)|<100
$$

Prove that exist $m \in \mathbb{F}_{p}$ such that for every $x \in \mathbb{F}_{p}$

$$
|f(x)-m x|<1000
$$

