

## AoPS Community

## **Olympic Revenge 2018**

www.artofproblemsolving.com/community/c673910 by LittleGlequius

1 Let  $(F_n)_{n\geq 1}$  the Fibonacci sequence. Find all  $n \in \mathbb{N}$  such that for every  $k = 0, 1, ..., F_n$ 

$$\binom{F_n}{k} \equiv (-1)^k \pmod{F_n + 1}$$

- **2** Let  $\triangle ABC$  a scalene triangle with incenter *I*, circumcenter *O* and circumcircle  $\Gamma$ . The incircle of  $\triangle ABC$  is tangent to *BC*, *CA* and *AB* at points *D*, *E* and *F*, respectively. The line *AI* meet *EF* and  $\Gamma$  at *N* and  $M \neq A$ , respectively. *MD* meet  $\Gamma$  at  $L \neq M$  and *IL* meet *EF* at *K*. The circumference of diameter *MN* meet  $\Gamma$  at  $P \neq M$ . Prove that *AK*, *PN* and *OI* are concurrent.
- **3** In a mathematical challenge, positive real numbers  $a_1 \ge a_2 \ge ... \ge a_n$  and an initial sequence of positive real numbers  $(b_1, b_2, ..., b_{n+1})$  are given to Secco. Let *C* a non-negative real number. In a sequence  $(x_1, x_2, ..., x_{n+1})$ , consider the following operation: Subtract 1 of some  $x_j$ ,  $j \in \{1, 2, ..., n + 1\}$ , add *C* to  $x_{n+1}$  and replace  $(x_1, x_2, ..., x_{j-1})$  for  $(x_1 + a_{\sigma(1)}, x_2 + a_{\sigma(2)}, ..., x_{j-1} + a_{\sigma(j-1)})$ , where  $\sigma$  is a permutation of (1, 2, ..., j - 1). Secco's goal is to make all terms of sequence  $(b_k)$  negative after a finite number of operations. Find all values of *C*, depending of  $a_1, a_2, ..., a_n, b_1, b_2, ..., b_{n+1}$ , for which Secco can attain his goal.
- 4 Let  $\triangle ABC$  an acute triangle of incenter I and incircle  $\omega$ .  $\omega$  is tangent to BC, CA and AB at points  $T_A$ ,  $T_B$  and  $T_C$ , respectively. Let  $l_A$  the line through A and parallel to BC and define  $l_B$  and  $l_C$  analogously. Let  $L_A$  the second intersection point of AI with the circumcircle of  $\triangle ABC$  and define  $L_B$  and  $L_C$  analogously. Let  $P_A = T_BT_C \cap l_A$  and define  $P_B$  and  $P_C$  analogously. Let  $S_A = P_BT_B \cap P_CT_C$  and define  $S_B$  and  $S_C$  analogously. Prove that  $S_AL_A$ ,  $S_BL_B$ ,  $S_CL_C$  are concurrent.
- **5** Let p a positive prime number and  $\mathbb{F}_p$  the set of integers mod p. For  $x \in \mathbb{F}_p$ , define |x| as the cyclic distance of x to 0, that is, if we represent x as an integer between 0 and p-1, |x| = x if  $x < \frac{p}{2}$ , and |x| = p x if  $x > \frac{p}{2}$ . Let  $f : \mathbb{F}_p \to \mathbb{F}_p$  a function such that for every  $x, y \in \mathbb{F}_p$

$$|f(x+y) - f(x) - f(y)| < 100$$

Prove that exist  $m \in \mathbb{F}_p$  such that for every  $x \in \mathbb{F}_p$ 

$$|f(x) - mx| < 1000$$

🐼 AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱