AoPS Community

2018 Asia Pacific Math Olympiad

www.artofproblemsolving.com/community/c674708
by Achillys, Irrational_phi

1 Let H be the orthocenter of the triangle $A B C$. Let M and N be the midpoints of the sides $A B$ and $A C$, respectively. Assume that H lies inside the quadrilateral $B M N C$ and that the circumcircles of triangles $B M H$ and $C N H$ are tangent to each other. The line through H parallel to $B C$ intersects the circumcircles of the triangles $B M H$ and $C N H$ in the points K and L, respectively. Let F be the intersection point of $M K$ and $N L$ and let J be the incenter of triangle $M H N$. Prove that $F J=F A$.

2 Let $f(x)$ and $g(x)$ be given by $f(x)=\frac{1}{x}+\frac{1}{x-2}+\frac{1}{x-4}+\cdots+\frac{1}{x-2018} g(x)=\frac{1}{x-1}+\frac{1}{x-3}+\frac{1}{x-5}+$ $\cdots+\frac{1}{x-2017}$.
Prove that $|f(x)-g(x)|>2$ for any non-integer real number x satisfying $0<x<2018$.
3 A collection of n squares on the plane is called tri-connected if the following criteria are satisfied:
(i) All the squares are congruent.
(ii) If two squares have a point P in common, then P is a vertex of each of the squares.
(iii) Each square touches exactly three other squares.

How many positive integers n are there with $2018 \leq n \leq 3018$, such that there exists a collection of n squares that is tri-connected?

4 Let $A B C$ be an equilateral triangle. From the vertex A we draw a ray towards the interior of the triangle such that the ray reaches one of the sides of the triangle. When the ray reaches a side, it then bounces off following the law of reflection, that is, if it arrives with a directed angle α, it leaves with a directed angle $180^{\circ}-\alpha$. After n bounces, the ray returns to A without ever landing on any of the other two vertices. Find all possible values of n.

5 Find all polynomials $P(x)$ with integer coefficients such that for all real numbers s and t, if $P(s)$ and $P(t)$ are both integers, then $P(s t)$ is also an integer.

