AoPS Community

2018 Cyprus IMO TST Problems

www.artofproblemsolving.com/community/c677808
by Amir Hossein

1 Determine all integers $n \geq 2$ for which the number 11111 in base n is a perfect square.
2 Consider a trapezium $A B \Gamma \Delta$, where $A \Delta \| B \Gamma$ and $\measuredangle A=120^{\circ}$. Let E be the midpoint of $A B$ and let O_{1} and O_{2} be the circumcenters of triangles $A E \Delta$ and $B E \Gamma$, respectively. Prove that the area of the trapezium is equal to six time the area of the triangle $O_{1} E O_{2}$.

3 Find all triples (α, β, γ) of positive real numbers for which the expression

$$
K=\frac{\alpha+3 \gamma}{\alpha+2 \beta+\gamma}+\frac{4 \beta}{\alpha+\beta+2 \gamma}-\frac{8 \gamma}{\alpha+\beta+3 \gamma}
$$

obtains its minimum value.
4 Let $\Lambda=\{1,2, \ldots, 2 v-1,2 v\}$ and $P=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 v-1}, \alpha_{2 v}\right\}$ be a permutation of the elements of Λ.
(a) Prove that

$$
\sum_{i=1}^{v} \alpha_{2 i-1} \alpha_{2 i} \leq \sum_{i=1}^{v}(2 i-1) 2 i .
$$

(b) Determine the largest positive integer m such that we can partition the $m \times m$ square into 7 rectangles for which every pair of them has no common interior points and their lengths and widths form the following sequence:

$$
1,2,3,4,5,6,7,8,9,10,11,12,13,14 .
$$

Source Taken from Cyprus national math olympiad webpage (http://www.cms.org.cy/index.php? id=1096).

