Art of Problem Solving

AoPS Community

Moroccan Team Selection Test

www.artofproblemsolving.com/community/c681749
by Medjl, math90, MarkBcc168, fastlikearabbit, Muradjl

- First Day

1 Let $a_{1}, a_{2}, \ldots a_{n}, k$, and M be positive integers such that

$$
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}=k \quad \text { and } \quad a_{1} a_{2} \cdots a_{n}=M
$$

If $M>1$, prove that the polynomial

$$
P(x)=M(x+1)^{k}-\left(x+a_{1}\right)\left(x+a_{2}\right) \cdots\left(x+a_{n}\right)
$$

has no positive roots.
2 A rectangle \mathcal{R} with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of \mathcal{R} are either all odd or all even.

Proposed by Jeck Lim, Singapore
3 In triangle $A B C$, let ω be the excircle opposite to A. Let D, E and F be the points where ω is tangent to $B C, C A$, and $A B$, respectively. The circle $A E F$ intersects line $B C$ at P and Q. Let M be the midpoint of $A D$. Prove that the circle $M P Q$ is tangent to ω.

- Second Day

4 Let $A B C D E$ be a convex pentagon such that $A B=B C=C D, \angle E A B=\angle B C D$, and $\angle E D C=\angle C B A$. Prove that the perpendicular line from E to $B C$ and the line segments $A C$ and $B D$ are concurrent.
$5 \quad$ Let n be a positive integer. Define a chameleon to be any sequence of $3 n$ letters, with exactly n occurrences of each of the letters a, b, and c. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon X, there exists a chameleon Y such that X cannot be changed to Y using fewer than $3 n^{2} / 2$ swaps.

6 Determine all integers $n \geq 2$ having the following property. for any integers $a_{1}, a_{2}, \ldots, a_{n}$ whose sum is not divisible by n, there exists an index $1 \leq i \leq n$ such that none of the numbers

$$
a_{i}, a_{i}+a_{i+1}, \ldots, a_{i}+a_{i+1}+\ldots+a_{i+n-1}
$$

is divisible by n. Here, we let $a_{i}=a_{i-n}$ when $i>n$.

