AoPS Community

www.artofproblemsolving.com/community/c686694
by rerarura13, abbosjon2002, CantonMathGuy, sqing, va2010, ABCDE

- Day 1

1 Consider a regular polygon $A_{1} A_{2} \ldots A_{6 n+3}$. The vertices $A_{2 n+1}, A_{4 n+2}, A_{6 n+3}$ are called holes. Initially there are three pebbles in some vertices of the polygon, which are also vertices of equilateral triangle. Players A and B take moves in turn. In each move, starting from A, the player chooses pebble and puts it to the next vertex clockwise (for example, $A_{2} \rightarrow A_{3}, A_{6 n+3} \rightarrow$ A_{1}). Player A wins if at least two pebbles lie in holes after someone's move. Does player A always have winning strategy?

Proposed by Bohdan Rublov
2 Find all functions from positive integers to itself such that $f(a+b)=f(a)+f(b)+f(c)+f(d)$ for all $c^{2}+d^{2}=2 a b$

3 Let $A B C$ be a triangle with $C A \neq C B$. Let D, F, and G be the midpoints of the sides $A B$, $A C$, and $B C$ respectively. A circle Γ passing through C and tangent to $A B$ at D meets the segments $A F$ and $B G$ at H and I, respectively. The points H^{\prime} and I^{\prime} are symmetric to H and I about F and G, respectively. The line $H^{\prime} I^{\prime}$ meets $C D$ and $F G$ at Q and M, respectively. The line $C M$ meets Γ again at P. Prove that $C Q=Q P$.

Proposed by El Salvador

- Day 2

$4 \quad$ Find all positive integers a such that for any positive integer $n \geq 5$ we have $2^{n}-n^{2} \mid a^{n}-n^{a}$.
5 Let $A B C$ be an equilateral triangle of side 1 . There are three grasshoppers sitting in A, B, C. At any point of time for any two grasshoppers separated by a distance d one of them can jump over other one so that distance between them becomes $2 k d, k, d$ are nonfixed positive integers. Let M, N be points on rays $A B, A C$ such that $A M=A N=l, l$ is fixed positive integer. In a finite number of jumps all of grasshoppers end up sitting inside the triangle $A M N$. Find, in terms of l, the number of final positions of the grasshoppers. (Grasshoppers can leave the triangle $A M N$ during their jumps.)

6 Let n be a fixed positive integer. Find the maximum possible value of

$$
\sum_{1 \leq r<s \leq 2 n}(s-r-n) x_{r} x_{s},
$$

where $-1 \leq x_{i} \leq 1$ for all $i=1, \cdots, 2 n$.

- Day 3

$7 \quad$ Let m and n be positive integers such that $m>n$. Define $x_{k}=\frac{m+k}{n+k}$ for $k=1,2, \ldots, n+1$. Prove that if all the numbers $x_{1}, x_{2}, \ldots, x_{n+1}$ are integers, then $x_{1} x_{2} \ldots x_{n+1}-1$ is divisible by an odd prime.

8 Let $A B C$ be an acute triangle with $A B<B C$. Let I be the incenter of $A B C$, and let ω be the circumcircle of $A B C$. The incircle of $A B C$ is tangent to the side $B C$ at K. The line $A K$ meets ω again at T. Let M be the midpoint of the side $B C$, and let N be the midpoint of the arc $B A C$ of ω. The segment $N T$ intersects the circumcircle of $B I C$ at P. Prove that $P M \| A K$.
$9 \quad$ Let n be a positive integer. Two players A and B play a game in which they take turns choosing positive integers $k \leq n$. The rules of the game are:
(i) A player cannot choose a number that has been chosen by either player on any previous turn.
(ii) A player cannot choose a number consecutive to any of those the player has already chosen on any previous turn.
(iii) The game is a draw if all numbers have been chosen; otherwise the player who cannot choose a number anymore loses the game.

The player A takes the first turn. Determine the outcome of the game, assuming that both players use optimal strategies.
Proposed by Finland

- Day 4

10 Let a_{1}, \ldots, a_{n} be real numbers. Define polynomials f, g by

$$
f(x)=\sum_{k=1}^{n} a_{k} x^{k}, g(x)=\sum_{k=1}^{n} \frac{a_{k}}{2^{k}-1} x^{k} .
$$

Assume that $g(2016)=0$. Prove that $f(x)$ has a root in $(0 ; 2016)$.
11 Let $A B C$ be a triangle with $\angle C=90^{\circ}$, and let H be the foot of the altitude from C. A point D is chosen inside the triangle $C B H$ so that $C H$ bisects $A D$. Let P be the intersection point of the lines $B D$ and $C H$. Let ω be the semicircle with diameter $B D$ that meets the segment $C B$ at an interior point. A line through P is tangent to ω at Q. Prove that the lines $C Q$ and $A D$ meet on ω.

12 Suppose that a_{0}, a_{1}, \cdots and b_{0}, b_{1}, \cdots are two sequences of positive integers such that $a_{0}, b_{0} \geq$ 2 and

$$
a_{n+1}=\operatorname{gcd}\left(a_{n}, b_{n}\right)+1, \quad b_{n+1}=\operatorname{lcm}\left(a_{n}, b_{n}\right)-1 .
$$

Show that the sequence a_{n} is eventually periodic; in other words, there exist integers $N \geq 0$ and $t>0$ such that $a_{n+t}=a_{n}$ for all $n \geq N$.

