

AoPS Community

2016 Ukraine Team Selection Test

www.artofproblemsolving.com/community/c686694

by rerarura13, abbosjon2002, CantonMathGuy, sqing, va2010, ABCDE

-	Day 1
1	Consider a regular polygon $A_1A_2 \dots A_{6n+3}$. The vertices $A_{2n+1}, A_{4n+2}, A_{6n+3}$ are called <i>holes</i> . Initially there are three pebbles in some vertices of the polygon, which are also vertices of equilateral triangle. Players A and B take moves in turn. In each move, starting from A , the player chooses pebble and puts it to the next vertex clockwise (for example, $A_2 \rightarrow A_3, A_{6n+3} \rightarrow A_1$). Player A wins if at least two pebbles lie in holes after someone's move. Does player A always have winning strategy? <i>Proposed by Bohdan Rublov</i>
2	Find all functions from positive integers to itself such that $f(a+b) = f(a) + f(b) + f(c) + f(d)$ for all $c^2 + d^2 = 2ab$
3	Let ABC be a triangle with $CA \neq CB$. Let D , F , and G be the midpoints of the sides AB , AC , and BC respectively. A circle Γ passing through C and tangent to AB at D meets the segments AF and BG at H and I , respectively. The points H' and I' are symmetric to H and I about F and G , respectively. The line $H'I'$ meets CD and FG at Q and M , respectively. The line CM meets Γ again at P . Prove that $CQ = QP$.
	Proposed by El Salvador
-	Day 2
4	Find all positive integers a such that for any positive integer $n \ge 5$ we have $2^n - n^2 \mid a^n - n^a$.
5	Let ABC be an equilateral triangle of side 1. There are three grasshoppers sitting in A, B, C . At any point of time for any two grasshoppers separated by a distance d one of them can jump over other one so that distance between them becomes $2kd$, k , d are nonfixed positive integers. Let M, N be points on rays AB , AC such that $AM = AN = l$, l is fixed positive integer. In a finite number of jumps all of grasshoppers end up sitting inside the triangle AMN . Find, in terms of l , the number of final positions of the grasshoppers. (Grasshoppers can leave the triangle AMN during their jumps.)

6 Let *n* be a fixed positive integer. Find the maximum possible value of

$$\sum_{1 \le r < s \le 2n} (s - r - n) x_r x_s,$$

AoPS Community

2016 Ukraine Team Selection Test

where $-1 \le x_i \le 1$ for all $i = 1, \dots, 2n$.

- Day 3
- 7 Let *m* and *n* be positive integers such that m > n. Define $x_k = \frac{m+k}{n+k}$ for k = 1, 2, ..., n + 1. Prove that if all the numbers $x_1, x_2, ..., x_{n+1}$ are integers, then $x_1x_2...x_{n+1} - 1$ is divisible by an odd prime.
- 8 Let ABC be an acute triangle with AB < BC. Let I be the incenter of ABC, and let ω be the circumcircle of ABC. The incircle of ABC is tangent to the side BC at K. The line AK meets ω again at T. Let M be the midpoint of the side BC, and let N be the midpoint of the arc BAC of ω . The segment NT intersects the circumcircle of BIC at P. Prove that $PM \parallel AK$.
- **9** Let *n* be a positive integer. Two players *A* and *B* play a game in which they take turns choosing positive integers $k \le n$. The rules of the game are:

(i) A player cannot choose a number that has been chosen by either player on any previous turn.

(ii) A player cannot choose a number consecutive to any of those the player has already chosen on any previous turn.

(iii) The game is a draw if all numbers have been chosen; otherwise the player who cannot choose a number anymore loses the game.

The player A takes the first turn. Determine the outcome of the game, assuming that both players use optimal strategies.

Proposed by Finland

- Day 4
- **10** Let a_1, \ldots, a_n be real numbers. Define polynomials f, g by

$$f(x) = \sum_{k=1}^{n} a_k x^k, \ g(x) = \sum_{k=1}^{n} \frac{a_k}{2^k - 1} x^k.$$

Assume that g(2016) = 0. Prove that f(x) has a root in (0; 2016).

11 Let ABC be a triangle with $\angle C = 90^{\circ}$, and let H be the foot of the altitude from C. A point D is chosen inside the triangle CBH so that CH bisects AD. Let P be the intersection point of the lines BD and CH. Let ω be the semicircle with diameter BD that meets the segment CB at an interior point. A line through P is tangent to ω at Q. Prove that the lines CQ and AD meet on ω .

AoPS Community

2016 Ukraine Team Selection Test

12 Suppose that a_0, a_1, \cdots and b_0, b_1, \cdots are two sequences of positive integers such that $a_0, b_0 \ge 2$ and

 $a_{n+1} = \gcd(a_n, b_n) + 1, \qquad b_{n+1} = \operatorname{lcm}(a_n, b_n) - 1.$

Show that the sequence a_n is eventually periodic; in other words, there exist integers $N \ge 0$ and t > 0 such that $a_{n+t} = a_n$ for all $n \ge N$.

AoPS Online 🔯 AoPS Academy 🙋 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.