AoPS Community

Spain Mathematical Olympiad 2005

www.artofproblemsolving.com/community/c686991
by Snakes, OmicronGamma, parmenides51

- Day 1

1 Let a and b be integers. Demonstrate that the equation

$$
(x-a)(x-b)(x-3)+1=0
$$

has an integer solution.
2 Is it possible to color points in the Cartesian Plane (x, y) with integer coordinates with three colors, such that each color appears infinitely many times on infinitely many lines parallel to the x-axis and that any three points, each of a different color, are not in a line? Justify your answer.

3 We will say that a triangle is multiplicative if the product of the heights of two of its sides is equal to the length of the third side. Given $A B C \ldots X Y Z$ is a regular polygon with n sides of length 1 . The $n-3$ diagonals that go out from vertex A divide the triangle $Z A B$ in $n-2$ smaller triangles. Prove that each one of these triangles is multiplicative.

- Day 2

1 Prove that for every positive integer n, the decimal expression of $\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}$ is periodic .
2 Let r, s, u, v be real numbers. Prove that:

$$
\min \left\{r-s^{2}, s-u^{2}, u-v^{2}, v-r^{2}\right\} \leq \frac{1}{4}
$$

3 In a triangle with sides a, b, c the side a is the arithmetic mean of b and c. Prove that:
a) $0^{\circ} \leq A \leq 60^{\circ}$.
b) The height relative to side a is three times the inradius r.
c) The distance from the circumcenter to side a is $R-r$, where R is the circumradius.

