Art of Problem Solving

AoPS Community

EGMO 2015

www.artofproblemsolving.com/community/c68714
by Sayan, socrates, aditya21

Day 1 April 16th

1 Let $\triangle A B C$ be an acute-angled triangle, and let D be the foot of the altitude from C. The angle bisector of $\angle A B C$ intersects $C D$ at E and meets the circumcircle ω of triangle $\triangle A D E$ again at F.
If $\angle A D F=45^{\circ}$, show that $C F$ is tangent to ω.
2 A domino is a 2×1 or 1×2 tile. Determine in how many ways exactly n^{2} dominoes can be placed without overlapping on a $2 n \times 2 n$ chessboard so that every 2×2 square contains at least two uncovered unit squares which lie in the same row or column.

3 Let n, m be integers greater than 1 , and let $a_{1}, a_{2}, \ldots, a_{m}$ be positive integers not greater than n^{m}. Prove that there exist positive integers $b_{1}, b_{2}, \ldots, b_{m}$ not greater than n, such that

$$
\operatorname{gcd}\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{m}+b_{m}\right)<n
$$

where $\operatorname{gcd}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ denotes the greatest common divisor of $x_{1}, x_{2}, \ldots, x_{m}$.

Day 2 April 17th

4 Determine whether there exists an infinite sequence $a_{1}, a_{2}, a_{3}, \ldots$ of positive integers which satisfies the equality

$$
a_{n+2}=a_{n+1}+\sqrt{a_{n+1}+a_{n}}
$$

for every positive integer n.
$5 \quad$ Let m, n be positive integers with $m>1$. Anastasia partitions the integers $1,2, \ldots, 2 m$ into m pairs. Boris then chooses one integer from each pair and finds the sum of these chosen integers.
Prove that Anastasia can select the pairs so that Boris cannot make his sum equal to n.
6 Let H be the orthocentre and G be the centroid of acute-angled triangle $A B C$ with $A B \neq A C$. The line $A G$ intersects the circumcircle of $A B C$ at A and P. Let P^{\prime} be the reflection of P in the line $B C$. Prove that $\angle C A B=60$ if and only if $H G=G P^{\prime}$

