

AoPS Community

2006 Mexico National Olympiad

Mexico National Olympiad 2006

www.artofproblemsolving.com/community/c691055 by parmenides51, juckter, Pul de Algodoncito

-	Day 1
1	Let ab be a two digit number. A positive integer n is a <i>relative</i> of ab if:
	- The units digit of n is b . - The remaining digits of n are nonzero and add up to a . Find all two digit numbers which divide all of their relatives.
2	Let ABC be a right triangle with a right angle at A , such that $AB < AC$. Let M be the midpoint of BC and D the intersection of AC with the perpendicular on BC passing through M . Let E be the intersection of the parallel to AC that passes through M , with the perpendicular on BD passing through B . Show that the triangles AEM and MCA are similar if and only if $\angle ABC = 60^{\circ}$.
3	Let <i>n</i> be an integer greater than 1. In how many ways can we fill all the numbers $1, 2,, 2n$ in the boxes of a grid of $2 \times n$, one in each box, so that any two consecutive numbers are they in squares that share one side of the grid?
-	Day 2
4	For which positive integers n can be covered a ladder like that of the figure (but with n steps instead of 4) with n squares of integer sides, not necessarily the same size, without these squares overlapping and without standing out from the edge of the figure ?
5	Let ABC be an acute triangle, with altitudes AD , BE and CF . Circle of diameter AD intersects the sides AB , AC in M , N respectively. Let P , Q be the intersection points of AD with EF and MN respectively. Show that Q is the midpoint of PD .
6	Let n be the sum of the digits in a natural number A. The number A it's said to be "surtido" if every number 1,2,3,4,n can be expressed as a sum of digits in A.
	a)Prove that, if 1,2,3,4,5,6,7,8 are sums of digits in A, then A is "Surtido" b)If 1,2,3,4,5,6,7 are sums of digits in A, does it follow that A is "Surtido"?

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱