Art of Problem Solving

AoPS Community

Mexico National Olympiad 2006

www.artofproblemsolving.com/community/c691055
by parmenides51, juckter, Pul de Algodoncito

- Day 1

1 Let $a b$ be a two digit number. A positive integer n is a relative of $a b$ if:

- The units digit of n is b.
- The remaining digits of n are nonzero and add up to a.

Find all two digit numbers which divide all of their relatives.
2 Let $A B C$ be a right triangle with a right angle at A, such that $A B<A C$. Let M be the midpoint of $B C$ and D the intersection of $A C$ with the perpendicular on $B C$ passing through M. Let E be the intersection of the parallel to $A C$ that passes through M, with the perpendicular on $B D$ passing through B. Show that the triangles $A E M$ and $M C A$ are similar if and only if $\angle A B C=60^{\circ}$.

3 Let n be an integer greater than 1 . In how many ways can we fill all the numbers $1,2, \ldots, 2 n$ in the boxes of a grid of $2 \times n$, one in each box, so that any two consecutive numbers are they in squares that share one side of the grid?

- Day 2

4 For which positive integers n can be covered a ladder like that of the figure (but with n steps instead of 4) with n squares of integer sides, not necessarily the same size, without these squares overlapping and without standing out from the edge of the figure?

5 Let $A B C$ be an acute triangle, with altitudes $A D, B E$ and $C F$. Circle of diameter $A D$ intersects the sides $A B, A C$ in M, N respevtively. Let P, Q be the intersection points of $A D$ with $E F$ and $M N$ respectively. Show that Q is the midpoint of $P D$.

6 Let n be the sum of the digits in a natural number A . The number A it's said to be "surtido" if every number $1,2,3,4 \ldots, n$ can be expressed as a sum of digits in A.
a)Prove that, if $1,2,3,4,5,6,7,8$ are sums of digits in A, then A is "Surtido"
b)If $1,2,3,4,5,6,7$ are sums of digits in A, does it follow that A is "Surtido"?

