Art of Problem Solving

AoPS Community

Mexico National Olympiad 2004

www.artofproblemsolving.com/community/c691061
by parmenides51

- Day 1

1 Find all the prime number p, q and r with $p<q<r$, such that $25 p q+r=2004$ and $p q r+1$ is a perfect square.

2 Find the maximum number of positive integers such that any two of them a, b (with $a \neq b$) satisfy that $|a-b| \geq \frac{a b}{100}$.
$3 \quad$ Let Z and Y be the tangency points of the incircle of the triangle $A B C$ with the sides $A B$ and $C A$, respectively. The parallel line to $Y Z$ through the midpoint M of $B C$, meets $C A$ in N. Let L be the point in $C A$ such that $N L=A B$ (and L on the same side of N than A). The line $M L$ meets $A B$ in K. Prove that $K A=N C$.

- Day 2

4 At the end of a soccer tournament in which any pair of teams played between them exactly once, and in which there were not draws, it was observed that for any three teams A, B and C , if A defeated B and B defeated C, then A defeated C. Any team calculated the difference (positive) between the number of games that it won and the number of games it lost. The sum of all these differences was 5000 . How many teams played in the tournament? Find all possible answers.
$5 \quad$ Let ω_{1} and ω_{2} be two circles such that the center O of ω_{2} lies in ω_{1}. Let C and D be the two intersection points of the circles. Let A be a point on ω_{1} and let B be a point on ω_{2} such that $A C$ is tangent to ω_{2} in C and BC is tangent to ω_{1} in C. The line segment $A B$ meets ω_{2} again in E and also meets ω_{1} again in F. The line $C E$ meets ω_{1} again in G and the line $C F$ meets the line $G D$ in H. Prove that the intersection point of $G O$ and $E H$ is the center of the circumcircle of the triangle $D E F$.

6 What is the maximum number of possible change of directions in a path traveling on the edges of a rectangular array of 2004×2004, if the path does not cross the same place twice?.

