Art of Problem Solving

AoPS Community

Mexico National Olympiad 2003

www.artofproblemsolving.com/community/c691080
by parmenides51, barasawala

- Day 1

1 Find all positive integers with two or more digits such that if we insert a 0 between the units and tens digits we get a multiple of the original number.
$2 A, B, C$ are collinear with B betweeen A and $C . K_{1}$ is the circle with diameter $A B$, and K_{2} is the circle with diameter $B C$. Another circle touches $A C$ at B and meets K_{1} again at P and K_{2} again at Q. The line $P Q$ meets K_{1} again at R and K_{2} again at S. Show that the lines $A R$ and $C S$ meet on the perpendicular to $A C$ at B.

3 At a party there are n women and n men. Each woman likes r of the men, and each man likes s of then women. For which r and s must there be a man and a woman who like each other?

- Day 2

4 The quadrilateral $A B C D$ has $A B$ parallel to $C D$. P is on the side $A B$ and Q on the side $C D$ such that $\frac{A P}{P B}=\frac{D Q}{C Q}$. M is the intersection of $A Q$ and $D P$, and N is the intersection of $P C$ and $Q B$. Find $M N$ in terms of $A B$ and $C D$.

5 Some cards each have a pair of numbers written on them. There is just one card for each pair (a, b) with $1 \leq a<b \leq 2003$. Two players play the following game. Each removes a card in turn and writes the product $a b$ of its numbers on the blackboard. The first player who causes the greatest common divisor of the numbers on the blackboard to fall to 1 loses. Which player has a winning strategy?

6 Given a positive integer n, an allowed move is to form $2 n+1$ or $3 n+2$. The set S_{n} is the set of all numbers that can be obtained by a sequence of allowed moves starting with n. For example, we can form $5 \rightarrow 11 \rightarrow 35$ so 5,11 and 35 belong to S_{5}. We call m and n compatible if S_{m} and S_{n} has a common element. Which members of $\{1,2,3, \ldots, 2002\}$ are compatible with 2003 ?

