AoPS Community

Nordic 1988

www.artofproblemsolving.com/community/c691088
by parmenides51

1 The positive integer n has the following property:
if the three last digits of n are removed, the number $\sqrt[3]{n}$ remains.
Find n.
2 Let a, b, and c be non-zero real numbers and let $a \geq b \geq c$. Prove the inequality $\frac{a^{3}-c^{3}}{3} \geq a b c\left(\frac{a-b}{c}+\right.$ $\left.\frac{b-c}{a}\right)$. When does equality hold?

3 Two concentric spheres have radii r and $R, r<R$. We try to select points A, B and C on the surface of the larger sphere such that all sides of the triangle $A B C$ would be tangent to the surface of the smaller sphere. Show that the points can be selected if and only if $R \leq 2 r$.

4 Let m_{n} be the smallest value of the function $f_{n}(x)=\sum_{k=0}^{2 n} x^{k}$
Show that $m_{n} \rightarrow \frac{1}{2}$, as $n \rightarrow \infty$.

