

AoPS Community

Nordic 1988

www.artofproblemsolving.com/community/c691088 by parmenides51

1	The positive integer n has the following property: if the three last digits of n are removed, the number $\sqrt[3]{n}$ remains. Find n .
2	Let a, b , and c be non-zero real numbers and let $a \ge b \ge c$. Prove the inequality $\frac{a^3-c^3}{3} \ge abc(\frac{a-b}{c} + \frac{b-c}{a})$. When does equality hold?
3	Two concentric spheres have radii r and $R, r < R$. We try to select points A, B and C on the surface of the larger sphere such that all sides of the triangle ABC would be tangent to the surface of the smaller sphere. Show that the points can be selected if and only if $R \le 2r$.
4	Let m_n be the smallest value of the function $f_n(x) = \sum_{k=0}^{2n} x^k$ Show that $m_n \to \frac{1}{2}$, as $n \to \infty$.

1988 Nordic

Art of Problem Solving is an ACS WASC Accredited School.