

## **AoPS Community**

## Nordic 1989

www.artofproblemsolving.com/community/c691089 by parmenides51

- Find a polynomial P of lowest possible degree such that
  (a) P has integer coefficients,
  (b) all roots of P are integers,
  (c) P(0) = -1,
  (d) P(3) = 128.
- 2 Three sides of a tetrahedron are right-angled triangles having the right angle at their common vertex. The areas of these sides are *A*, *B*, and *C*. Find the total surface area of the tetrahedron.
- **3** Let *S* be the set of all points *t* in the closed interval [-1, 1] such that for the sequence  $x_0, x_1, x_2, ...$  defined by the equations  $x_0 = t, x_{n+1} = 2x_n^2 1$ , there exists a positive integer *N* such that  $x_n = 1$  for all  $n \ge N$ . Show that the set *S* has infinitely many elements.
- **4** For which positive integers *n* is the following statement true: if  $a_1, a_2, ..., a_n$  are positive integers,  $a_k \le n$  for all k and  $\sum_{k=1}^n a_k = 2n$ then it is always possible to choose  $a_{i1}, a_{i2}, ..., a_{ij}$  in such a way that the indices  $i_1, i_2, ..., i_j$  are different numbers, and  $\sum_{k=1}^j a_{ik} = n$ ?

1989 Nordic