AoPS Community

Nordic 1989

www.artofproblemsolving.com/community/c691089
by parmenides51

1 Find a polynomial P of lowest possible degree such that
(a) P has integer coefficients,
(b) all roots of P are integers,
(c) $P(0)=-1$,
(d) $P(3)=128$.

2 Three sides of a tetrahedron are right-angled triangles having the right angle at their common vertex. The areas of these sides are A, B, and C. Find the total surface area of the tetrahedron.

3 Let S be the set of all points t in the closed interval $[-1,1]$ such that for the sequence $x_{0}, x_{1}, x_{2}, \ldots$ defined by the equations $x_{0}=t, x_{n+1}=2 x_{n}^{2}-1$, there exists a positive integer N such that $x_{n}=1$ for all $n \geq N$. Show that the set S has infinitely many elements.

4 For which positive integers n is the following statement true:
if $a_{1}, a_{2}, \ldots, a_{n}$ are positive integers, $a_{k} \leq n$ for all k and $\sum_{k=1}^{n} a_{k}=2 n$ then it is always possible to choose $a_{i 1}, a_{i 2}, \ldots, a_{i j}$ in such a way that the indices $i_{1}, i_{2}, \ldots, i_{j}$ are different numbers, and $\sum_{k=1}^{j} a_{i k}=n$?

