

AoPS Community

Nordic 1990

www.artofproblemsolving.com/community/c691090 by parmenides51

1	Let $m, n,$ and p be odd positive integers. Prove that the number $\sum_{k=1}^{(n-1)^p} k^m$ is divisible by n
2	Let $a_1, a_2,, a_n$ be real numbers. Prove $\sqrt[3]{a_1^3 + a_2^3 + + a_n^3} \le \sqrt{a_1^2 + a_2^2 + + a_n^2}$ (1) When does equality hold in (1)?
3	Let <i>ABC</i> be a triangle and let <i>P</i> be an interior point of <i>ABC</i> . We assume that a line <i>l</i> , which passes through <i>P</i> , but not through <i>A</i> , intersects <i>AB</i> and <i>AC</i> (or their extensions over <i>B</i> or <i>C</i>) at <i>Q</i> and <i>R</i> , respectively. Find <i>l</i> such that the perimeter of the triangle <i>AQR</i> is as small as possible.
4	It is possible to perform three operations f, g , and h for positive integers: $f(n) = 10n, g(n) = 10n + 4$, and $h(2n) = n$; in other words, one may write 0 or 4 in the end of the number and one may divide an even number by 2. Prove: every positive integer can be constructed starting from 4 and performing a finite number of the operations f, g , and h in some order.

1990 Nordic

Art of Problem Solving is an ACS WASC Accredited School.