AoPS Community

Nordic 1990

www.artofproblemsolving.com/community/c691090
by parmenides51

1 Let m, n, and p be odd positive integers. Prove that the number $\sum_{k=1}^{(n-1)^{p}} k^{m}$ is divisible by n
2 Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers. Prove $\sqrt[3]{a_{1}^{3}+a_{2}^{3}+\ldots+a_{n}^{3}} \leq \sqrt{a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}}$ (1) When does equality hold in (1)?

3 Let $A B C$ be a triangle and let P be an interior point of $A B C$. We assume that a line l, which passes through P, but not through A, intersects $A B$ and $A C$ (or their extensions over B or $C)$ at Q and R, respectively. Find l such that the perimeter of the triangle $A Q R$ is as small as possible.

4 It is possible to perform three operations f, g, and h for positive integers: $f(n)=10 n, g(n)=$ $10 n+4$, and $h(2 n)=n$; in other words, one may write 0 or 4 in the end of the number and one may divide an even number by 2 . Prove: every positive integer can be constructed starting from 4 and performing a finite number of the operations f, g, and h in some order.

