

AoPS Community

1991 Nordic

Nordic 1991

www.artofproblemsolving.com/community/c691091 by parmenides51

1	Determine the last two digits of the number $2^5 + 2^{5^2} + 2^{5^3} + + 2^{5^{1991}}$, written in decimal notation.
2	In the trapezium $ABCD$ the sides AB and CD are parallel, and E is a fixed point on the side AB . Determine the point F on the side CD so that the area of the intersection of the triangles ABF and CDE is as large as possible.
3	Show that $\frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2} < \frac{2}{3}$ for all $n \ge 2$.
4	Let $f(x)$ be a polynomial with integer coefficients. We assume that there exists a positive integer k and k consecutive integers $n, n+1,, n+k-1$ so that none of the numbers $f(n), f(n+1),, f(n+k-1)$ is divisible by k . Show that the zeroes of $f(x)$ are not integers.

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY