AoPS Community

Nordic 1991

www.artofproblemsolving.com/community/c691091
by parmenides51

1 Determine the last two digits of the number $2^{5}+2^{5^{2}}+2^{5^{3}}+\ldots+2^{5^{1991}}$, written in decimal notation.

2 In the trapezium $A B C D$ the sides $A B$ and $C D$ are parallel, and E is a fixed point on the side $A B$. Determine the point F on the side $C D$ so that the area of the intersection of the triangles $A B F$ and $C D E$ is as large as possible.

3 Show that $\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots+\frac{1}{n^{2}}<\frac{2}{3}$ for all $n \geq 2$.
4 Let $f(x)$ be a polynomial with integer coefficients. We assume that there exists a positive integer k and k consecutive integers $n, n+1, \ldots, n+k-1$ so that none of the numbers $f(n), f(n+$ $1), \ldots, f(n+k-1)$ is divisible by k.
Show that the zeroes of $f(x)$ are not integers.

