AoPS Community

Nordic 1993

www.artofproblemsolving.com/community/c691093
by parmenides51

1 Let F be an increasing real function defined for all $x, 0 \leq x \leq 1$, satisfying the conditions
(i) $F\left(\frac{x}{3}\right)=\frac{F(x)}{2}$.
(ii) $F(1-x)=1-F(x)$.

Determine $F\left(\frac{173}{1993}\right)$ and $F\left(\frac{1}{13}\right)$.
2 A hexagon is inscribed in a circle of radius r. Two of the sides of the hexagon have length 1 , two have length 2 and two have length 3 . Show that r satisfies the equation $2 r^{3}-7 r-3=0$.

3 Find all solutions of the system of equations $\left\{\begin{array}{l}s(x)+s(y)=x \\ x+y+s(z)=z \\ s(x)+s(y)+s(z)=y-4\end{array}\right.$
where x, y, and z are positive integers, and $s(x), s(y)$, and $s(z)$ are the numbers of digits in the decimal representations of x, y, and z, respectively.

4 Denote by $T(n)$ the sum of the digits of the decimal representation of a positive integer n.
a) Find an integer N, for which $T(k \cdot N)$ is even for all $k, 1 \leq k \leq 1992$, but $T(1993 \cdot N)$ is odd.
b) Show that no positive integer N exists such that $T(k \cdot N)$ is even for all positive integers k.

