AoPS Community

Nordic 1994

www.artofproblemsolving.com/community/c691094
by parmenides51

1 Let O be an interior point in the equilateral triangle $A B C$, of side length a. The lines $A O, B O$, and $C O$ intersect the sides of the triangle in the points A_{1}, B_{1}, and C_{1}. Show that $O A_{1}+O B_{1}+$ $O C_{1}<a$.

2 We call a finite plane set S consisting of points with integer coefficients a two-neighbour set, if for each point (p, q) of S exactly two of the points $(p+1, q),(p, q+1),(p-1, q),(p, q-1)$ belong to S. For which integers n there exists a two-neighbour set which contains exactly n points?

3 A piece of paper is the square $A B C D$. We fold it by placing the vertex D on the point D^{\prime} of the side $B C$. We assume that $A D$ moves on the segment $A^{\prime} D^{\prime}$ and that $A^{\prime} D^{\prime}$ intersects $A B$ at E. Prove that the perimeter of the triangle $E B D^{\prime}$ is one half of the perimeter of the square.

4 Determine all positive integers $n<200$, such that $n^{2}+(n+1)^{2}$ is the square of an integer.

