AoPS Community

2009 Cono Sur Olympiad

Cono Sur Olympiad 2009

www.artofproblemsolving.com/community/c691101
by parmenides51, fprosk

- \quad Day 1

1 The four circles in the figure determine 10 bounded regions. 10 numbers summing to 100 are written in these regions, one in each region. The sum of the numbers contained in each circle is equal to S (the same quantity for each of the four circles). Determine the greatest and smallest possible values of S.

2 A hook consists of three segments of longitude 1 forming two right angles as demonstrated in the figure.
https://cdn.artofproblemsolving.com/attachments/1/d/630d8a98004501ed552fc326b0d8513e7fbc'
png
We have a square of side length n divided into n^{2} squares of side length 1 by lines parallel to its sides. Hooks are placed on this square in such a way that each segment of the hook covers one side of a little square. Two segements of a hook cannot overlap.
Determine all possible values of n for which it is possible to cover the sides of the n^{2} small squares.

3 Let A, B, and C be three points such that B is the midpoint of segment $A C$ and let P be a point such that $<P B C=60$. Equilateral triangle $P C Q$ is constructed such that B and Q are on different half=planes with respect to $P C$, and the equilateral triangle $A P R$ is constructed in such a way that B and R are in the same half-plane with respect to $A P$. Let X be the point of intersection of the lines $B Q$ and $P C$, and let Y be the point of intersection of the lines $B R$ and $A P$. Prove that $X Y$ and $A C$ are parallel.

- \quad Day 2

4 Andrea and Bruno play a game on a table with 11 rows and 9 columns. First Andrea divides the table in 33 zones. Each zone is formed by 3 contiguous cells aligned vertically or horizontally, as shown in the figure.
https://cdn.artofproblemsolving.com/attachments/d/e/8969bc57d26297155926b5377b265c2bb24e8 png
Then, Bruno writes one of the numbers $0,1,2,3,4,5$ in each cell in such a way that the sum of the numbers in each zone is equal to 5 . Bruno wins if the sum of the numbers written in each of the 9 columns of the table is a prime number. Otherwise, Andrea wins. Show that Bruno always has a winning strategy.

5 Given a succession C of 1001 positive real numbers (not necessarily distinct), and given a set K of distinct positive integers, the permitted operation is: select a number $k \in K$, then select k numbers in C, calculate the arithmetic mean of those k numbers, and replace each of those k selected numbers with the mean.

If K is a set such that for each C we can reach, by a sequence of permitted operations, a state where all the numbers are equal, determine the smallest possible value of the maximum element of K.

6 Sebastian has a certain number of rectangles with areas that sum up to 3 and with side lengths all less than or equal to 1 . Demonstrate that with each of these rectangles it is possible to cover a square with side 1 in such a way that the sides of the rectangles are parallel to the sides of the square.

Note: The rectangles can overlap and they can protrude over the sides of the square.

