Art of Problem Solving

AoPS Community

Cono Sur Olympiad 2008

www.artofproblemsolving.com/community/c691106
by parmenides51, fprosk

- Day 1

1 We define $I(n)$ as the result when the digits of n are reversed. For example, $I(123)=321$, $I(2008)=8002$. Find all integers $n, 1 \leq n \leq 10000$ for which $I(n)=\left\lceil\frac{n}{2}\right\rceil$.
Note: $\lceil x\rceil$ denotes the smallest integer greater than or equal to x. For example, $\lceil 2.1\rceil=3$, $\lceil 3.9\rceil=4,\lceil 7\rceil=7$.

2 Let P be a point in the interior of triangle $A B C$. Let X, Y, and Z be points on sides $B C, A C$, and $A B$ respectively, such that $<P X C=<P Y A=<P Z B$.
Let U, V, and W be points on sides $B C, A C$, and $A B$, respectively, or on their extensions if necessary, with X in between B and U, Y in between C and V, and Z in between A and W, such that $P U=2 P X, P V=2 P Y$, and $P W=2 P Z$. If the area of triangle $X Y Z$ is 1 , find the area of triangle $U V W$.

3 Two friends A and B must solve the following puzzle. Each of them receives a number from the set $\{1,2,, 250\}$, but they dont see the number that the other received. The objective of each friend is to discover the other friends number. The procedure is as follows: each friend, by turns, announces various not necessarily distinct positive integers: first A says a number, then B says one, A says a number again, etc., in such a way that the sum of all the numbers said is 20 . Demonstrate that there exists a strategy that A and B have previously agreed on such that they can reach the objective, no matter which number each one received at the beginning of the puzzle.

- Day 2

4 What is the largest number of cells that can be colored in a 7×7 table in such a way that any 2×2 subtable has at most 2 colored cells?
$5 \quad$ Let $A B C$ be an isosceles triangle with base $A B$. A semicircle Γ is constructed with its center on the segment AB and which is tangent to the two legs, $A C$ and $B C$. Consider a line tangent to Γ which cuts the segments $A C$ and $B C$ at D and E, respectively. The line perpendicular to $A C$ at D and the line perpendicular to $B C$ at E intersect each other at P. Let Q be the foot of the perpendicular from P to $A B$. Show that $\frac{P Q}{C P}=\frac{1}{2} \frac{A B}{A C}$.

6 A palindrome is a number that is the same when its digits are reversed. Find all numbers that have at least one multiple that is a palindrome.

