AoPS Community

Brazil National Olympiad 1983

www.artofproblemsolving.com/community/c691147
by parmenides51

1 Show that there are only finitely many solutions to $1 / a+1 / b+1 / c=1 / 1983$ in positive integers.

2 An equilateral triangle $A B C$ has side a. A square is constructed on the outside of each side of the triangle. A right regular pyramid with sloping side a is placed on each square. These pyramids are rotated about the sides of the triangle so that the apex of each pyramid comes to a common point above the triangle. Show that when this has been done, the other vertices of the bases of the pyramids (apart from the vertices of the triangle) form a regular hexagon.

3 Show that $1+1 / 2+1 / 3+\ldots+1 / n$ is not an integer for $n>1$.
4 Show that it is possible to color each point of a circle red or blue so that no right-angled triangle inscribed in the circle has its vertices all the same color.

5 Show that $1 \leq n^{1 / n} \leq 2$ for all positive integers n.
Find the smallest k such that $1 \leq n^{1 / n} \leq k$ for all positive integers n.
6 Show that the maximum number of spheres of radius 1 that can be placed touching a fixed sphere of radius 1 so that no pair of spheres has an interior point in common is between 12 and 14.

