## AoPS Community

## 1984 Brazil National Olympiad

## Brazil National Olympiad 1984

www.artofproblemsolving.com/community/c691148
by parmenides51
$1 \quad$ Find all solutions in positive integers to $(n+1)^{k}-1=n$ !
2 Each day 289 students are divided into 17 groups of 17 . No two students are ever in the same group more than once. What is the largest number of days that this can be done?

3 Given a regular dodecahedron of side $a$. Take two pairs of opposite faces: $E, E^{\prime}$ and $F, F^{\prime}$. For the pair $E, E^{\prime}$ take the line joining the centers of the faces and take points $A$ and $C$ on the line each a distance $m$ outside one of the faces. Similarly, take $B$ and $D$ on the line joining the centers of $F, F^{\prime}$ each a distance $m$ outside one of the faces. Show that $A B C D$ is a rectangle and find the ratio of its side lengths.
$4 A B C$ is a triangle with $\angle A=90^{\circ}$. For a point $D$ on the side $B C$, the feet of the perpendiculars to $A B$ and $A C$ are $E$ and $F$. For which point $D$ is $E F$ a minimum?
$5 \quad A B C D$ is any convex quadrilateral. Squares center $E, F, G, H$ are constructed on the outside of the edges $A B, B C, C D$ and $D A$ respectively. Show that $E G$ and $F H$ are equal and perpendicular.

6 There is a piece on each square of the solitaire board shown except for the central square. A move can be made when there are three adjacent squares in a horizontal or vertical line with two adjacent squares occupied and the third square vacant. The move is to remove the two pieces from the occupied squares and to place a piece on the third square. (One can regard one of the pieces as hopping over the other and taking it.) Is it possible to end up with a single piece on the board, on the square marked $X$ ?

