AoPS Community

Brazil National Olympiad 1985

www.artofproblemsolving.com/community/c691149
by parmenides51
$1 a, b, c, d$ are integers with $a d \neq b c$. Show that $1 /((a x+b)(c x+d))$ can be written in the form $r /(a x+b)+s /(c x+d)$. Find the sum $1 / 1 \cdot 4+1 / 4 \cdot 7+1 / 7 \cdot 10+\ldots+1 / 2998 \cdot 3001$.

2 Given n points in the plane, show that we can always find three which give an angle $\leq \pi / n$.
3 A convex quadrilateral is inscribed in a circle of radius 1 . Show that the its perimeter less the sum of its two diagonals lies between 0 and 2 .
$4 a, b, c, d$ are integers. Show that $x^{2}+a x+b=y^{2}+c y+d$ has infinitely many integer solutions iff $a^{2}-4 b=c^{2}-4 d$.
$5 \quad A, B$ are reals. Find a necessary and sufficient condition for $A x+B[x]=A y+B[y]$ to have no solutions except $x=y$.

