AoPS Community

Brazil National Olympiad 1989

www.artofproblemsolving.com/community/c691157
by Johann Peter Dirichlet

1 The sides of a triangle T, with vertices $(0,0),(3,0)$ and $(0,3)$ are mirrors.
Show that one of the images of the triagle T_{1} with vertices $(0,0),(0,1)$ and $(2,0)$ is the triangle with vertices $(24,36),(24,37)$ and $(26,36)$.

2 Let k a positive integer number such that $\frac{k(k+1)}{3}$ is a perfect square. Show that $\frac{k}{3}$ and $k+1$ are both perfect squares.

3 A function f, defined for the set of integers, is such that $f(x)=x-10$ if $x>100$ and $f(x)=$ $f(f(x+11))$ if $x \leq 100$.
Determine, justifying your answer, the set of all possible values for f.
4 A game is played by two contestants A and B, each one having ten chips numbered from 1 to 10. The board of game consists of two numbered rows, from 1 to 1492 on the first row and from 1 to 1989 on the second.

At the n-th turn, $n=1,2, \ldots, 10$, A puts his chip numbered n in any empty cell, and B puts his chip numbered n in any empty cell on the row not containing the chip numbered n from A .
B wins the game if, after the 10th turn, both rows show the numbers of the chips in the same relative order. Otherwise, A wins.

- Which player has a winning strategy?
- Suppose now both players has k chips numbered 1 to k. Which player has a winning strategy?
- Suppose further the rows are the set \mathbb{Q} of rationals and the set \mathbb{Z} of integers. Which player has a winning strategy?

5 A tetrahedron is such that the center of the its circumscribed sphere is inside the tetrahedron.
Show that at least one of its edges has a size larger than or equal to the size of the edge of a regular tetrahedron inscribed in this same sphere.

