

AoPS Community

1987 Mexico National Olympiad

Mexico National Olympiad 1987

www.artofproblemsolving.com/community/c691168 by parmenides51

-	Day 1
1	Prove that if the sum of two irreducible fractions is an integer then the two fractions have the same denominator.
2	How many positive divisors does number 20! have?
3	Consider two lines ℓ and ℓ' and a fixed point P equidistant from these lines. What is the locus of projections M of P on AB , where A is on ℓ , B on ℓ' , and angle $\angle APB$ is right?
4	Calculate the product of all positive integers less than 100 and having exactly three positive divisors. Show that this product is a square.
-	Day 2
5	In a right triangle ABC , M is a point on the hypotenuse BC and P and Q the projections of M on AB and AC respectively. Prove that for no such point M do the triangles BPM , MQC and the rectangle $AQMP$ have the same area.
6	Prove that for every positive integer n the number $(n^3 - n)(5^{8n+4} + 3^{4n+2})$ is a multiple of 3804 .
7	Show that the fraction $\frac{n^2+n-1}{n^2+2n}$ is irreducible for every positive integer n.
8	(a) Three lines l, m, n in space pass through point <i>S</i> . A plane perpendicular to <i>m</i> intersects l, m, n at A, B, C respectively. Suppose that $\angle ASB = \angle BSC = 45^{\circ}$ and $\angle ABC = 90^{\circ}$. Compute $\angle ASC$. (b) Furthermore, if a plane perpendicular to <i>l</i> intersects l, m, n at P, Q, R respectively and $SP = 1$, find the sides of triangle PQR .

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱