Art of Problem Solving

AoPS Community

Mexico National Olympiad 1987

www.artofproblemsolving.com/community/c691168
by parmenides51

- Day 1

1 Prove that if the sum of two irreducible fractions is an integer then the two fractions have the same denominator.

2 How many positive divisors does number 20! have?
3 Consider two lines ℓ and ℓ^{\prime} and a fixed point P equidistant from these lines. What is the locus of projections M of P on $A B$, where A is on ℓ, B on ℓ^{\prime}, and angle $\angle A P B$ is right?

4 Calculate the product of all positive integers less than 100 and having exactly three positive divisors. Show that this product is a square.

- Day 2

5 In a right triangle $A B C, \mathrm{M}$ is a point on the hypotenuse $B C$ and P and Q the projections of M on $A B$ and $A C$ respectively. Prove that for no such point M do the triangles $B P M, M Q C$ and the rectangle $A Q M P$ have the same area.

6 Prove that for every positive integer n the number $\left(n^{3}-n\right)\left(5^{8 n+4}+3^{4 n+2}\right)$ is a multiple of 3804 .

7 Show that the fraction $\frac{n^{2}+n-1}{n^{2}+2 n}$ is irreducible for every positive integer n .
8 (a) Three lines l, m, n in space pass through point S. A plane perpendicular to m intersects l, m, n at A, B, C respectively. Suppose that $\angle A S B=\angle B S C=45^{\circ}$ and $\angle A B C=90^{\circ}$. Compute $\angle A S C$.
(b) Furthermore, if a plane perpendicular to l intersects l, m, n at P, Q, R respectively and $S P=1$, find the sides of triangle $P Q R$.

