AoPS Community

Mexico National Olympiad 1988

www.artofproblemsolving.com/community/c691169
by parmenides51

- Day 1

1 In how many ways can one arrange seven white and five black balls in a line in such a way that there are no two neighboring black balls?

2 If a and b are positive integers, prove that $11 a+2 b$ is a multiple of 19 if and only if so is $18 a+5 b$

3 Two externally tangent circles with different radii are given. Their common tangents form a triangle. Find the area of this triangle in terms of the radii of the two circles.

4 In how many ways can one select eight integers $a_{1}, a_{2}, \ldots, a_{8}$, not necesarily distinct, such that $1 \leq a_{1} \leq \ldots \leq a_{8} \leq 8$?

- Day 2

5 If a and b are coprime positive integers and n an integer, prove that the greatest common divisor of $a^{2}+b^{2}-n a b$ and $a+b$ divides $n+2$.

6 Consider two fixed points B, C on a circle w. Find the locus of the incenters of all triangles $A B C$ when point A describes w.

7 Two disjoint subsets of the set $\{1,2, \ldots, m\}$ have the same sums of elements. Prove that each of the subsets A, B has less than $m / \sqrt{2}$ elements.

8 Compute the volume of a regular octahedron circumscribed about a sphere of radius 1.

