

AoPS Community

1988 Mexico National Olympiad

Mexico National Olympiad 1988

www.artofproblemsolving.com/community/c691169 by parmenides51

-	Day 1
1	In how many ways can one arrange seven white and five black balls in a line in such a way that there are no two neighboring black balls?
2	If a and b are positive integers, prove that $11a + 2b$ is a multiple of 19 if and only if so is $18a + 5b$.
3	Two externally tangent circles with different radii are given. Their common tangents form a triangle. Find the area of this triangle in terms of the radii of the two circles.
4	In how many ways can one select eight integers $a_1, a_2,, a_8$, not necessarily distinct, such that $1 \le a_1 \le \le a_8 \le 8$?
-	Day 2
5	If a and b are coprime positive integers and n an integer, prove that the greatest common divisor of $a^2 + b^2 - nab$ and $a + b$ divides $n + 2$.
6	Consider two fixed points B, C on a circle w . Find the locus of the incenters of all triangles ABC when point A describes w .
7	Two disjoint subsets of the set $\{1, 2,, m\}$ have the same sums of elements. Prove that each of the subsets A, B has less than $m/\sqrt{2}$ elements.
8	Compute the volume of a regular octahedron circumscribed about a sphere of radius 1 .

AoPS Online 🔯 AoPS Academy 🔯 AoPS & Cademy