

AoPS Community

1989 Mexico National Olympiad

Mexico National Olympiad 1989

www.artofproblemsolving.com/community/c691170 by parmenides51

-	Day 1
1	In a triangle ABC the area is 18, the length AB is 5, and the medians from A and B are orthog- onal. Find the lengths of the sides BC , AC .
2	Find two positive integers a, b such that $a b^2, b^2 a^3, a^3 b^4, b^4 a^5$, but a^5 does not divide b^6
3	Prove that there is no 1989 -digit natural number at least three of whose digits are equal to 5 and such that the product of its digits equals their sum.
-	Day 2
4	Find the smallest possible natural number $n = \overline{a_m \dots a_2 a_1 a_0}$ (in decimal system) such that the number $r = \overline{a_1 a_0 a_m \dots a_2 0}$ equals $2n$.
5	Let C_1 and C_2 be two tangent unit circles inside a circle C of radius 2. Circle C_3 inside C is tangent to the circles C, C_1, C_2 , and circle C_4 inside C is tangent to C, C_1, C_3 . Prove that the centers of C, C_1, C_3 and C_4 are vertices of a rectangle.
6	Determine the number of paths from A to B on the picture that go along gridlines only, do not pass through any point twice, and never go upwards? https://cdn.artofproblemsolving.com/attachments/0/2/87868e24a48a2e130fb5039daeb85af42f png

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱