AoPS Community

Mexico National Olympiad 1989

www.artofproblemsolving.com/community/c691170
by parmenides51

- \quad Day 1

1 In a triangle $A B C$ the area is 18 , the length $A B$ is 5 , and the medians from A and B are orthogonal. Find the lengths of the sides $B C, A C$.

2 Find two positive integers a, b such that $a\left|b^{2}, b^{2}\right| a^{3}, a^{3}\left|b^{4}, b^{4}\right| a^{5}$, but a^{5} does not divide b^{6}
3 Prove that there is no 1989-digit natural number at least three of whose digits are equal to 5 and such that the product of its digits equals their sum.

- Day 2

4 Find the smallest possible natural number $n=\overline{a_{m} \ldots a_{2} a_{1} a_{0}}$ (in decimal system) such that the number $r=\overline{a_{1} a_{0} a_{m \cdots 2} 0}$ equals $2 n$.

5 Let C_{1} and C_{2} be two tangent unit circles inside a circle C of radius 2 . Circle C_{3} inside C is tangent to the circles C, C_{1}, C_{2}, and circle C_{4} inside C is tangent to C, C_{1}, C_{3}. Prove that the centers of C, C_{1}, C_{3} and C_{4} are vertices of a rectangle.

6 Determine the number of paths from A to B on the picture that go along gridlines only, do not pass through any point twice, and never go upwards?
https://cdn.artofproblemsolving.com/attachments/0/2/87868e24a48a2e130fb5039daeb85af42f4bs png

