Art of Problem Solving

AoPS Community

Mexico National Olympiad 2000

www.artofproblemsolving.com/community/c691177
by parmenides51, AlexLewandowski

- Day 1

1 Circles A, B, C, D are given on the plane such that circles A and B are externally tangent at P, B and C at Q, C and D at R, and D and A at S. Circles A and C do not meet, and so do not B and D.
(a) Prove that the points P, Q, R, S lie on a circle.
(b) Suppose that A and C have radius $2, B$ and D have radius 3 , and the distance between the centers of A and C is 6 . Compute the area of the quadrilateral $P Q R S$.

2 A triangle of numbers is constructed as follows. The first row consists of the numbers from 1 to 2000 in increasing order, and under any two consecutive numbers their sum is written. (See the example corresponding to 5 instead of 2000 below.) What is the number in the lowermost row?

12345
3579
81216
2028
4
3 Given a set A of positive integers, the set A^{\prime} is composed from the elements of A and all positive integers that can be obtained in the following way:
Write down some elements of A one after another without repeating, write a sign + or - before each of them, and evaluate the obtained expression. The result is included in A^{\prime}.
For example, if $A=\{2,8,13,20\}$, numbers 8 and $14=20-2+8$ are elements of A^{\prime}.
Set $A^{\prime \prime}$ is constructed from A^{\prime} in the same manner.
Find the smallest possible number of elements of A, if $A^{\prime \prime}$ contains all the integers from 1 to 40.

- Day 2
$4 \quad$ Let a and b be positive integers not divisible by 5 . A sequence of integers is constructed as follows: the first term is 5 , and every consequent term is obtained by multiplying its precedent by a and adding b. (For example, if $a=2$ and $b=4$, the first three terms are $5,14,32$.) What is the maximum possible number of primes that can occur before encoutering the first composite term?

5 A board $n n$ is coloured black and white like a chessboard. The following steps are permitted:

Choose a rectangle inside the board (consisting of entire cells)whose side lengths are both odd or both even, but not both equal to 1 , and invert the colours of all cells inside the rectangle. Determine the values of n for which it is possible to make all the cells have the same colour in a finite number of such steps.

6 Let $A B C$ be a triangle with $\angle B>90^{\circ}$ such that there is a point H on side $A C$ with $A H=B H$ and BH perpendicular to $B C$. Let D and E be the midpoints of $A B$ and $B C$ respectively. A line through H parallel to $A B$ cuts $D E$ at F. Prove that $\angle B C F=\angle A C D$.

