AoPS Community

Mexico National Olympiad 1995

www.artofproblemsolving.com/community/c691182
by parmenides51, MexicOMM

- \quad Day 1
$1 \quad N$ students are seated at desks in an $m \times n$ array, where $m, n \geq 3$. Each student shakes hands with the students who are adjacent horizontally, vertically or diagonally. If there are 1020handshakes, what is N ?

2 Consider 6 points on a plane such that 8 of the distances between them are equal to 1 . Prove that there are at least 3 points that form an equilateral triangle.
$3 A, B, C, D$ are consecutive vertices of a regular 7-gon. $A L$ and $A M$ are tangents to the circle center C radius $C B . N$ is the intersection point of $A C$ and $B D$. Show that L, M, N are collinear.

- Day 2

4 Find 26 elements of $\{1,2,3, \ldots, 40\}$ such that the product of two of them is never a square. Show that one cannot find 27 such elements.
$5 \quad A B C D E$ is a convex pentagon such that the triangles $A B C, B C D, C D E, D E A$ and $E A B$ have equal areas. Show that $(1 / 4)$ area $(A B C D E)<$ area $(A B C)<(1 / 3)$ area $(A B C D E)$.

6 A 1 or 0 is placed on each square of a 4×4 board. One is allowed to change each symbol in a row, or change each symbol in a column, or change each symbol in a diagonal (there are 14 diagonals of lengths 1 to 4). For which arrangements can one make changes which end up with all 0 s?

