Art of Problem Solving

AoPS Community

Mexico National Olympiad 1996

www.artofproblemsolving.com/community/c691183
by parmenides51

- Day 1

1 Let P and Q be the points on the diagonal $B D$ of a quadrilateral $A B C D$ such that $B P=P Q=$ $Q D$. Let $A P$ and $B C$ meet at E, and let $A Q$ meet $D C$ at F.
(a) Prove that if $A B C D$ is a parallelogram, then E and F are the midpoints of the corresponding sides.
(b) Prove the converse of (a).

2 There are 64 booths around a circular table and on each one there is a chip. The chips and the corresponding booths are numbered 1 to 64 in this order. At the center of the table there are 1996 light bulbs which are all turned off. Every minute the chips move simultaneously in a circular way (following the numbering sense) as follows: chip 1 moves one booth, chip 2 moves two booths, etc., so that more than one chip can be in the same booth. At any minute, for each chip sharing a booth with chip 1 a bulb is lit. Where is chip 1 on the first minute in which all bulbs are lit?

3 Prove that it is not possible to cover a 6×6 square board with eighteen 2×1 rectangles, in such a way that each of the lines going along the interior gridlines cuts at least one of the rectangles. Show also that it is possible to cover a 6×5 rectangle with fifteen 2×1 rectangles so that the above condition is fulfilled.

- Day 2

4 For which integers $n \geq 2$ can the numbers 1 to 16 be written each in one square of a squared 4×4 paper such that the 8 sums of the numbers in rows and columns are all different and divisible by n ?

5 The numbers 1 to n^{2} are written in an $n \times n$ squared paper in the usual ordering. Any sequence of right and downwards steps from a square to an adjacent one (by side) starting at square 1 and ending at square n^{2} is called a path. Denote by $L(C)$ the sum of the numbers through which path C goes.
(a) For a fixed n, let M and m be the largest and smallest $L(C)$ possible. Prove that $M-m$ is a perfect cube.
(b) Prove that for no n can one find a path C with $L(C)=1996$.

6 In a triangle $A B C$ with $A B<B C<A C$, points $A^{\prime}, B^{\prime}, C^{\prime}$ are such that $A A^{\prime} \perp B C$ and $A A^{\prime}=$ $B C, B B^{\prime} \perp C A$ and $B B^{\prime}=C A$, and $C C^{\prime} \perp A B$ and $C C^{\prime}=A B$, as shown on the picture. Suppose that $\angle A C^{\prime} B$ is a right angle. Prove that the points $A^{\prime}, B^{\prime}, C^{\prime}$ are collinear.

