AoPS Community

Mexico National Olympiad 1997

www.artofproblemsolving.com/community/c691188
by parmenides51

- Day 1

1 Determine all prime numbers p for which $8 p^{4}-3003$ is a positive prime number.
2 In a triangle $A B C, P$ and P^{\prime} are points on side $B C, Q$ on side $C A$, and R on side $A B$, such that $\frac{A R}{R B}=\frac{B P}{P C}=\frac{C Q}{Q A}=\frac{C P^{\prime}}{P^{\prime} B}$. Let G be the centroid of triangle $A B C$ and K be the intersection point of $A P^{\prime}$ and $R Q$. Prove that points P, G, K are collinear.

3 The numbers 1 through 16 are to be written in the cells of a 4×4 board.
(a) Prove that this can be done in such a way that any two numbers in cells that share a side differ by at most 4.
(b) Prove that this cannot be done in such a way that any two numbers in cells that share a side differ by at most 3 .

- Day 2

4 What is the minimum number of planes determined by 6 points in space which are not all coplanar, and among which no three are collinear?

5 Let P, Q, R be points on the sides $B C, C A, A B$ respectively of a triangle $A B C$. Suppose that $B Q$ and $C R$ meet at $A^{\prime}, A P$ and $C R$ meet at B^{\prime}, and $A P$ and $B Q$ meet at C^{\prime}, such that $A B^{\prime}=$ $B^{\prime} C^{\prime}, B C^{\prime}=C^{\prime} A^{\prime}$, and $C A^{\prime}=A^{\prime} B^{\prime}$. Compute the ratio of the area of $\triangle P Q R$ to the area of $\triangle A B C$.

6 Prove that number 1 has infinitely many representations of the form

$$
1=\frac{1}{5}+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}
$$

, where n and a_{i} are positive integers with $5<a_{1}<a_{2}<\ldots<a_{n}$.

