

AoPS Community

1997 Mexico National Olympiad

Mexico National Olympiad 1997

www.artofproblemsolving.com/community/c691188 by parmenides51

-	Day 1
1	Determine all prime numbers p for which $8p^4 - 3003$ is a positive prime number.
2	In a triangle ABC , P and P' are points on side BC , Q on side CA , and R on side AB , such that $\frac{AR}{RB} = \frac{BP}{PC} = \frac{CQ}{QA} = \frac{CP'}{P'B}$. Let G be the centroid of triangle ABC and K be the intersection point of AP' and RQ . Prove that points P, G, K are collinear.
3	 The numbers 1 through 16 are to be written in the cells of a 4 × 4 board. (a) Prove that this can be done in such a way that any two numbers in cells that share a side differ by at most 4. (b) Prove that this cannot be done in such a way that any two numbers in cells that share a side differ by at most 3.
-	Day 2
4	What is the minimum number of planes determined by 6 points in space which are not all coplanar, and among which no three are collinear?
5	Let P, Q, R be points on the sides BC, CA, AB respectively of a triangle ABC . Suppose that BQ and CR meet at A', AP and CR meet at B' , and AP and BQ meet at C' , such that $AB' = B'C', BC' = C'A'$, and $CA' = A'B'$. Compute the ratio of the area of $\triangle PQR$ to the area of $\triangle ABC$.
6	Prove that number 1 has infinitely many representations of the form
	$1 = \frac{1}{5} + \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$
	, where n and a_i are positive integers with $5 < a_1 < a_2 < < a_n$.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.