## AoPS Community

## Mexico National Olympiad 1990

www.artofproblemsolving.com/community/c691189
by parmenides51

- $\quad$ Day 1

1 How many paths are there from $A$ to the line $B C$ if the path does not go through any vertex twice and always moves to the left?
https://cdn.artofproblemsolving.com/attachments/e/6/a4bc3a9decc06eaeed6f7e99cb58f7b252447
jpg
$2 A B C$ is a triangle with $\angle B=90^{\circ}$ and altitude $B H$. The inradii of $A B C, A B H, C B H$ are $r, r_{1}, r_{2}$. Find a relation between them.

3 Show that $n^{n-1}-1$ is divisible by $(n-1)^{2}$ for $n>2$.

- Day 2

4 Find $0 / 1+1 / 1+0 / 2+1 / 2+2 / 2+0 / 3+1 / 3+2 / 3+3 / 3+0 / 4+1 / 4+2 / 4+3 / 4+4 / 4+0 / 5+$ $1 / 5+2 / 5+3 / 5+4 / 5+5 / 5+0 / 6+1 / 6+2 / 6+3 / 6+4 / 6+5 / 6+6 / 6$

5 Given 19 points in the plane with integer coordinates, no three collinear, show that we can always find three points whose centroid has integer coordinates.
$6 A B C$ is a triangle with $\angle C=90^{\circ} . E$ is a point on $A C$, and $F$ is the midpoint of $E C . C H$ is an altitude. $I$ is the circumcenter of $A H E$, and $G$ is the midpoint of $B C$. Show that $A B C$ and IGF are similar.

