Art of Problem Solving

AoPS Community

Mexico National Olympiad 1991

www.artofproblemsolving.com/community/c691190
by parmenides51

- Day 1

1 Evaluate the sum of all positive irreducible fractions less than 1 and having the denominator 1991.

2 A company of n soldiers is such that
(i) n is a palindrome number (read equally in both directions);
(ii) if the soldiers arrange in rows of 3,4 or 5 soldiers, then the last row contains 2,3 and 5 soldiers, respectively.
Find the smallest n satisfying these conditions and prove that there are infinitely many such numbers n.

3 Four balls of radius 1 are placed in space so that each of them touches the other three. What is the radius of the smallest sphere containing all of them?

- Day 2

4 The diagonals $A C$ and $B D$ of a convex quarilateral $A B C D$ are orthogonal. Let M, N, R, S be the midpoints of the sides $A B, B C, C D$ and $D A$ respectively, and let W, X, Y, Z be the projections of the points M, N, R and S on the lines $C D, D A, A B$ and $B C$, respectively. Prove that the points M, N, R, S, W, X, Y and Z lie on a circle.

5 The sum of squares of two consecutive integers can be a square, as in $3^{2}+4^{2}=5^{2}$. Prove that the sum of squares of m consecutive integers cannot be a square for $m=3$ or 6 and find an example of 11 consecutive integers the sum of whose squares is a square.
$6 \quad$ Given an n-gon ($n \geq 4$), consider a set T of triangles formed by vertices of the polygon having the following property: Every two triangles in T have either two common vertices, or none. Prove that T contains at most n triangles.

