AoPS Community

Mexico National Olympiad 1992

www.artofproblemsolving.com/community/c691191
by parmenides51

- Day 1

1 The tetrahedron $O P Q R$ has the $\angle P O Q=\angle P O R=\angle Q O R=90^{\circ} . X, Y, Z$ are the midpoints of $P Q, Q R$ and $R P$. Show that the four faces of the tetrahedron $O X Y Z$ have equal area.

2 Given a prime number p, how many 4-tuples (a, b, c, d) of positive integers with $0 \leq a, b, c, d \leq$ $p-1$ satisfy $a d=b c \bmod p$?

3 Given 7 points inside or on a regular hexagon, show that three of them form a triangle with area $\leq 1 / 6$ the area of the hexagon.

- Day 2

4 Show that $1+11^{11}+111^{111}+1111^{1111}+\ldots+1111111111^{1111111111}$ is divisible by 100 .
$5 x, y, z$ are positive reals with sum 3 . Show that

$$
6<\sqrt{2 x+3}+\sqrt{2 y+3}+\sqrt{2 z+3} \leq 3 \sqrt{5}
$$

$6 \quad A B C D$ is a rectangle. I is the midpoint of $C D . B I$ meets $A C$ at M. Show that the line $D M$ passes through the midpoint of $B C$. E is a point outside the rectangle such that $A E=B E$ and $\angle A E B=90^{\circ}$. If $B E=B C=x$, show that $E M$ bisects $\angle A M B$. Find the area of $A E B M$ in terms of x.

