

AoPS Community

1992 Mexico National Olympiad

Mexico National Olympiad 1992

www.artofproblemsolving.com/community/c691191 by parmenides51

-	Day 1
1	The tetrahedron $OPQR$ has the $\angle POQ = \angle POR = \angle QOR = 90^{\circ}$. X, Y, Z are the midpoints of PQ , QR and RP . Show that the four faces of the tetrahedron $OXYZ$ have equal area.
2	Given a prime number p , how many 4-tuples (a, b, c, d) of positive integers with $0 \le a, b, c, d \le p - 1$ satisfy $ad = bc \mod p$?
3	Given 7 points inside or on a regular hexagon, show that three of them form a triangle with area $\leq 1/6$ the area of the hexagon.
-	Day 2
4	Show that $1 + 11^{11} + 111^{111} + 1111^{1111} + + 1111111111^{111111111}$ is divisible by 100.
5	x, y, z are positive reals with sum 3. Show that
	$6 < \sqrt{2x+3} + \sqrt{2y+3} + \sqrt{2z+3} \le 3\sqrt{5}$

6 ABCD is a rectangle. *I* is the midpoint of *CD*. *BI* meets *AC* at *M*. Show that the line *DM* passes through the midpoint of *BC*. *E* is a point outside the rectangle such that AE = BE and $\angle AEB = 90^{\circ}$. If BE = BC = x, show that *EM* bisects $\angle AMB$. Find the area of *AEBM* in terms of *x*.

Act of Problem Solving is an ACS WASC Accredited School.