AoPS Community

Mexico National Olympiad 1993

www.artofproblemsolving.com/community/c691192
by parmenides51

- Day 1
$1 A B C$ is a triangle with $\angle A=90^{\circ}$. Take E such that the triangle $A E C$ is outside $A B C$ and $A E=C E$ and $\angle A E C=90^{\circ}$. Similarly, take D so that $A D B$ is outside $A B C$ and similar to $A E C$. O is the midpoint of $B C$. Let the lines $O D$ and $E C$ meet at D^{\prime}, and the lines $O E$ and $B D$ meet at E^{\prime}. Find area $D E D^{\prime} E^{\prime}$ in terms of the sides of $A B C$.

2 Find all numbers between 100 and 999 which equal the sum of the cubes of their digits.
3 Given a pentagon of area 1993 and 995 points inside the pentagon, let S be the set containing the vertices of the pentagon and the 995 points. Show that we can find three points of S which form a triangle of area ≤ 1.

```
- Day 2
```

$4 \quad f(n, k)$ is defined by
(1) $f(n, 0)=f(n, n)=1$ and
(2) $f(n, k)=f(n-1, k-1)+f(n-1, k)$ for $0<k<n$.

How many times do we need to use (2) to find $f(3991,1993)$?
$5 \quad O A, O B, O C$ are three chords of a circle. The circles with diameters $O A, O B$ meet again at Z, the circles with diameters $O B, O C$ meet again at X, and the circles with diameters $O C, O A$ meet again at Y. Show that X, Y, Z are collinear.
$6 \quad p$ is an odd prime. Show that p divides $n(n+1)(n+2)(n+3)+1$ for some integer n iff p divides $m^{2}-5$ for some integer m.

