Art of Problem Solving

AoPS Community

2018 China Northern Math Olympiad

www.artofproblemsolving.com/community/c691280
by Henry_2001, Devastator, minecraftfaq

- \quad Grade 10
- \quad Test 1

1 In triangle $A B C$, let the circumcenter, incenter, and orthocenter be O, I, and H respectively. Segments $A O, A I$, and $A H$ intersect the circumcircle of triangle $A B C$ at D, E, and $F . C D$ intersects $A E$ at M and $C E$ intersects $A F$ at N. Prove that $M N$ is parallel to $B C$.

2 Let a, b, c be nonnegative reals such that

$$
a^{2}+b^{2}+c^{2}+a b+\frac{2}{3} a c+\frac{4}{3} b c=1
$$

Find the maximum and minimum value of $a+b+c$.
$3 \quad$ Let p be a prime such that $3 \mid p+1$. Show that $p \mid a-b$ if and only if $p \mid a^{3}-b^{3}$
4 In each square of a 4 by 4 grid, you put either $a+1$ or $a-1$. If any 2 rows and 2 columns are deleted, the sum of the remaining 4 numbers is nonnegative. What is the minimum number of +1 's needed to be placed to be able to satisfy the conditions

- \quad Test 2

5 A right triangle has the property that it's sides are pairwise relatively prime positive integers and that the ratio of it's area to it's perimeter is a perfect square. Find the minimum possible area of this triangle.
$6 \quad$ Let H be the orthocenter of triangle $A B C$. Let D and E be points on $A B$ and $A C$ such that $D E$ is parallel to $C H$. If the circumcircle of triangle $B D H$ passes through M, the midpoint of $D E$, then prove that $\angle A B M=\angle A C M$

7 If a, b, c are positive reals, prove that

$$
\frac{a+b c}{a+a^{2}}+\frac{b+c a}{b+b^{2}}+\frac{c+a b}{c+c^{2}} \geq 3
$$

82 players A and B play the following game with A going first: On each player's turn, he puts a number from 1 to 99 among 99 equally spaced points on a circle (numbers cannot be repeated), and the player who completes 3 consecutive numbers that forms an arithmetic sequence around the circle wins the game. Who has the winning strategy? Explain your reasoning.

- \quad Grade 11
- \quad Test 1

1 The same as Grade 10 Problem 2
2 Let p be a prime. We say p is good if and only if for any positive integer a, b, such that

$$
a \equiv b(\bmod p) \Leftrightarrow a^{3} \equiv b^{3}(\bmod p) .
$$

Prove that
(1)There are infinite primes p which are good;
(2)There are infinite primes p which are not good.
$3 A, B, C, D, E$ lie on $\odot O$ in that order,and

$$
B D \cap C E=F, C E \cap A D=G, A D \cap B E=H, B E \cap A C=I, A C \cap B D=J .
$$

Prove that $\frac{F G}{C E}=\frac{G H}{D A}=\frac{H I}{B E}=\frac{I J}{A C}=\frac{J F}{B D}$ when and only when F, G, H, I, J are concyclic.
4 For $n(n \geq 3)$ positive intengers $a_{1}, a_{2}, \cdots, a_{n}$. Put the numbers on a circle. In each operation, calculate difference between two adjacent numbers and take its absolute value. Put the n numbers we get on another ciecle (do not change their order). Find all n, satisfying that no matter how $a_{1}, a_{2}, \cdots, a_{n}$ are given, all numbers on the circle are equal after limited operations.

- \quad Test 2

5 The same as Grade 10 Problem 6
$6 \quad$ For $a_{1}=3$, define the sequence $a_{1}, a_{2}, a_{3}, \ldots$ for $n \geq 1$ as

$$
n a_{n+1}=2(n+1) a_{n}-n-2 .
$$

Prove that for any odd prime p, there exist positive integer m, such that $p \mid a_{m}$ and $p \mid a_{m+1}$.
7 The same as Grade 10 Problem 8
8 Prove that there exist infinite positive integer n, such that $2018 \mid\left(1+2^{n}+3^{n}+4^{n}\right)$.

