Art of Problem Solving

AoPS Community

Vietnam National Olympiad 1979
www.artofproblemsolving.com/community/c691365
by parmenides51

- Day 1

1 Show that for all $x>1$ there is a triangle with sides, $x^{4}+x^{3}+2 x^{2}+x+1,2 x^{3}+x^{2}+2 x+1, x^{4}-1$.

2 Find all real numbers a, b, c such that $x^{3}+a x^{2}+b x+c$ has three real roots α, β, γ (not necessarily all distinct) and the equation $x^{3}+\alpha^{3} x^{2}+\beta^{3} x+\gamma^{3}$ has roots $\alpha^{3}, \beta^{3}, \gamma^{3}$.
$3 \quad A B C$ is a triangle. Find a point X on $B C$ such that : area $A B X /$ area $A C X=$ perimeter $A B X /$ perimeter $A C X$.

- Day 2

4 For each integer $n>0$ show that there is a polynomial $p(x)$ such that $p(2 \cos x)=2 \cos n x$.
$5 \quad$ Find all real numbers k such that $x^{2}-2 x[x]+x-k=0$ has at least two non-negative roots.
$6 \quad A B C D$ is a rectangle with $B C / A B=\sqrt{2} . A B E F$ is a congruent rectangle in a different plane. Find the angle $D A F$ such that the lines $C A$ and $B F$ are perpendicular. In this configuration, find two points on the line $C A$ and two points on the line $B F$ so that the four points form a regular tetrahedron.

