

AoPS Community

Vietnam National Olympiad 1978

www.artofproblemsolving.com/community/c691366 by parmenides51

-	Day 1
1	Find all three digit numbers \overline{abc} such that $2 \cdot \overline{abc} = \overline{bca} + \overline{cab}$.
2	Find all values of the parameter m such that the equations $x^2 = 2^{ x } + x - y - m = 1 - y^2$ have only one root.
3	The triangle <i>ABC</i> has angle $A = 30^{\circ}$ and $AB = \frac{3}{4}AC$. Find the point <i>P</i> inside the triangle which minimizes $5PA + 4PB + 3PC$.
-	Day 2
4	Find three rational numbers $\frac{a}{d}$, $\frac{b}{d}$, $\frac{c}{d}$ in their lowest terms such that they form an arithmetic progression and $\frac{b}{a} = \frac{a+1}{d+1}$, $\frac{c}{b} = \frac{b+1}{d+1}$.
5	A river has a right-angle bend. Except at the bend, its banks are parallel lines of distance a apart. At the bend the river forms a square with the river flowing in across one side and out across an adjacent side. What is the longest boat of length c and negligible width which can pass through the bend?
6	Given a rectangular parallelepiped $ABCDA'B'C'D'$ with the bases $ABCD, A'B'C'D'$, the edges AA', BB', CC', DD' and $AB = a, AD = b, AA' = c$. Show that there exists a triangle with the sides equal to the distances from A, A', D to the diagonal BD' of the parallelepiped. Denote those distances by m_1, m_2, m_3 . Find the relationship between a, b, c, m_1, m_2, m_3 .

Art of Problem Solving is an ACS WASC Accredited School.