AoPS Community

Vietnam National Olympiad 1978
www.artofproblemsolving.com/community/c691366
by parmenides51

- Day 1

1 Find all three digit numbers $\overline{a b c}$ such that $2 \cdot \overline{a b c}=\overline{b c a}+\overline{c a b}$.
2 Find all values of the parameter m such that the equations $x^{2}=2^{|x|}+|x|-y-m=1-y^{2}$ have only one root.

3 The triangle $A B C$ has angle $A=30^{\circ}$ and $A B=\frac{3}{4} A C$. Find the point P inside the triangle which minimizes $5 P A+4 P B+3 P C$.

- Day 2

4 Find three rational numbers $\frac{a}{d}, \frac{b}{d}, \frac{c}{d}$ in their lowest terms such that they form an arithmetic progression and $\frac{b}{a}=\frac{a+1}{d+1}, \frac{c}{b}=\frac{b+1}{d+1}$.

5 A river has a right-angle bend. Except at the bend, its banks are parallel lines of distance a apart. At the bend the river forms a square with the river flowing in across one side and out across an adjacent side. What is the longest boat of length c and negligible width which can pass through the bend?

6 Given a rectangular parallelepiped $A B C D A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ with the bases $A B C D, A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, the edges $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}$ and $A B=a, A D=b, A A^{\prime}=c$. Show that there exists a triangle with the sides equal to the distances from A, A^{\prime}, D to the diagonal $B D^{\prime}$ of the parallelepiped. Denote those distances by m_{1}, m_{2}, m_{3}. Find the relationship between $a, b, c, m_{1}, m_{2}, m_{3}$.

