AoPS Community

Sharygin Geometry Olympiad 2014

www.artofproblemsolving.com/community/c691367
by parmenides51, djmathman, hajimbrak

- \quad First (Correspondence) Round

1 A right-angled triangle $A B C$ is given. Its catheus $A B$ is the base of a regular triangle $A D B$ lying in the exterior of $A B C$, and its hypotenuse $A C$ is the base of a regular triangle $A E C$ lying in the interior of $A B C$. Lines $D E$ and $A B$ meet at point M. The whole configuration except points A and B was erased. Restore the point M.

2 A paper square with sidelength 2 is given. From this square, can we cut out a 12 -gon having all sidelengths equal to 1 and all angles divisible by 45° ?

3 Let $A B C$ be an isosceles triangle with base $A B$. Line ℓ touches its circumcircle at point B. Let $C D$ be a perpendicular from C to ℓ, and $A E, B F$ be the altitudes of $A B C$. Prove that D, E, and F are collinear.

4 A square is inscribed into a triangle (one side of the triangle contains two vertices and each of two remaining sides contains one vertex. Prove that the incenter of the triangle lies inside the square.

5 In an acute-angled triangle $A B C, A M$ is a median, $A L$ is a bisector and $A H$ is an altitude (H lies between L and B). It is known that $M L=L H=H B$. Find the ratios of the sidelengths of $A B C$.

6 Given a circle with center O and a point P not lying on it, let X be an arbitrary point on this circle and Y be a common point of the bisector of angle $P O X$ and the perpendicular bisector to segment $P X$. Find the locus of points Y.

7 A parallelogram $A B C D$ is given. The perpendicular from C to $C D$ meets the perpendicular from A to $B D$ at point F, and the perpendicular from B to $A B$ meets the perpendicular bisector to $A C$ at point E. Find the ratio in which side $B C$ divides segment $E F$.

8 Let $A B C D$ be a rectangle. Two perpendicular lines pass through point B. One of them meets segment $A D$ at point K, and the second one meets the extension of side $C D$ at point L. Let F be the common point of $K L$ and $A C$. Prove that $B F \perp K L$.
$9 \quad$ Two circles ω_{1} and ω_{2} touching externally at point L are inscribed into angle $B A C$. Circle ω_{1} touches ray $A B$ at point E, and circle ω_{2} touches ray $A C$ at point M. Line $E L$ meets ω_{2} for the second time at point Q. Prove that $M Q \| A L$.

AoPS Community

2014 Sharygin Geometry Olympiad

10 Two disjoint circles ω_{1} and ω_{2} are inscribed into an angle. Consider all pairs of parallel lines l_{1} and l_{2} such that l_{1} touches ω_{1} and l_{2} touches $\omega_{2}\left(\omega_{1}, \omega_{2}\right.$ lie between l_{1} and $\left.l_{2}\right)$. Prove that the medial lines of all trapezoids formed by l_{1} and l_{2} and the sides of the angle touch some fixed circle.

11 Points K, L, M and N lying on the sides $A B, B C, C D$ and $D A$ of a square $A B C D$ are vertices of another square. Lines $D K$ and $N M$ meet at point E, and lines $K C$ and $L M$ meet at point F . Prove that $E F \| A B$.

12 Circles ω_{1} and ω_{2} meet at points A and B. Let points K_{1} and K_{2} of ω_{1} and ω_{2} respectively be such that $K_{1} A$ touches ω_{2}, and $K_{2} A$ touches ω_{1}. The circumcircle of triangle $K_{1} B K_{2}$ meets lines $A K_{1}$ and $A K_{2}$ for the second time at points L_{1} and L_{2} respectively. Prove that L_{1} and L_{2} are equidistant from line $A B$.

13 Let $A C$ be a fixed chord of a circle ω with center O. Point B moves along the arc $A C$. A fixed point P lies on $A C$. The line passing through P and parallel to $A O$ meets $B A$ at point A_{1}, the line passing through P and parallel to $C O$ meets $B C$ at point C_{1}. Prove that the circumcenter of triangle $A_{1} B C_{1}$ moves along a straight line.

14 In a given disc, construct a subset such that its area equals the half of the disc area and its intersection with its reflection over an arbitrary diameter has the area equal to the quarter of the disc area.

15 Let $A B C$ be a non-isosceles triangle. The altitude from A, the bisector from B and the median from C concur at point K.
a) Which of the sidelengths of the triangle is medial (intermediate in length)?
b) Which of the lengths of segments $A K, B K, C K$ is medial (intermediate in length)?

16 Given a triangle $A B C$ and an arbitrary point D. The lines passing through D and perpendicular to segments $D A, D B, D C$ meet lines $B C, A C, A B$ at points A_{1}, B_{1}, C_{1} respectively. Prove that the midpoints of segments $A A_{1}, B B_{1}, C C_{1}$ are collinear.

17 Let $A C$ be the hypothenuse of a right-angled triangle $A B C$. The bisector $B D$ is given, and the midpoints E and F of the arcs $B D$ of the circumcircles of triangles $A D B$ and $C D B$ respectively are marked (the circles are erased). Construct the centers of these circles using only a ruler.

18 Let I be the incenter of a circumscribed quadrilateral $A B C D$. The tangents to circle $A I C$ at points A, C meet at point X. The tangents to circle $B I D$ at points B, D meet at point Y. Prove that X, I, Y are collinear.

19 Two circles ω_{1} and ω_{2} touch externally at point P. Let A be a point on ω_{2} not lying on the line through the centres of the two circles.Let $A B$ and $A C$ be the tangents to ω_{1}. Lines $B P$ and $C P$ meet ω_{2} for the second time at points E and F. Prove that the line $E F$, the tangent to ω_{2} at A and
the common tangent at P concur.
20 A quadrilateral $K L M N$ is given. A circle with center O meets its side $K L$ at points A and A_{1}, side $L M$ at points B and B_{1}, etc. Prove that if the circumcircles of triangles $K D A, L A B, M B C$ and $N C D$ concur at point P, then
a) the circumcircles of triangles $K D_{1} A_{1}, L A_{1} B_{1}, M B_{1} C_{1}$ and $N C 1 D 1$ also concur at some point Q;
b) point O lies on the perpendicular bisector to $P Q$.

21 Let $A B C D$ be a circumscribed quadrilateral. Its incircle ω touches the sides $B C$ and $D A$ at points E and F respectively. It is known that lines $A B, F E$ and $C D$ concur. The circumcircles of triangles $A E D$ and $B F C$ meet ω for the second time at points E_{1} and F_{1}. Prove that $E F$ is parallel to $E_{1} F_{1}$.

22 Does there exist a convex polyhedron such that it has diagonals and each of them is shorter than each of its edges?

23 Let A, B, C and D be a triharmonic quadruple of points, i.e $A B \cdot C D=A C \cdot B D=A D \cdot B C$. Let A_{1} be a point distinct from A such that the quadruple A_{1}, B, C and D is triharmonic. Points B_{1}, C_{1} and D_{1} are defined similarly. Prove that
a) A, B, C_{1}, D_{1} are concyclic;
b) the quadruple $A_{1}, B_{1}, C_{1}, D_{1}$ is triharmonic.

24 A circumscribed pyramid $A B C D S$ is given. The opposite sidelines of its base meet at points P and Q in such a way that A and B lie on segments $P D$ and $P C$ respectively. The inscribed sphere touches faces $A B S$ and $B C S$ at points K and L. Prove that if $P K$ and $Q L$ are complanar then the touching point of the sphere with the base lies on $B D$.

- \quad Final Round

- \quad grade 8

1 The incircle of a right-angled triangle $A B C$ touches its catheti $A C$ and $B C$ at points B_{1} and A_{1}, the hypotenuse touches the incircle at point C_{1}. Lines $C_{1} A_{1}$ and $C_{1} B_{1}$ meet $C A$ and $C B$ respectively at points B_{0} and A_{0}. Prove that $A B_{0}=B A_{0}$.
(J. Zajtseva, D. Shvetsov)

2 Let $A H_{a}$ and $B H_{b}$ be altitudes, $A L_{a}$ and $B L_{b}$ be angle bisectors of a triangle $A B C$. It is known that $H_{a} H_{b} / / L_{a} L_{b}$. Is it necessarily true that $A C=B C$?
(B. Frenkin)

3 Points M and N are the midpoints of sides $A C$ and $B C$ of a triangle $A B C$. It is known that $\angle M A N=15^{\circ}$ and $\angle B A N=45^{\circ}$. Find the value of angle $\angle A B M$.
(A. Blinkov)

4 Tanya has cut out a triangle from checkered paper as shown in the picture. The lines of the grid have faded. Can Tanya restore them without any instruments only folding the triangle (she remembers the triangle sidelengths)?
(T. Kazitsyna)

5 A triangle with angles of 30,70 and 80 degrees is given. Cut it by a straight line into two triangles in such a way that an angle bisector in one of these triangles and a median in the other one drawn from two endpoints of the cutting segment are parallel to each other. (It suffices to find one such cutting.)
(A. Shapovalov)

6 Two circles k_{1} and k_{2} with centers O_{1} and O_{2} are tangent to each other externally at point O. Points X and Y on k_{1} and k_{2} respectively are such that rays $O_{1} X$ and $O_{2} Y$ are parallel and codirectional. Prove that two tangents from X to k_{2} and two tangents from Y to k_{1} touch the same circle passing through O.
(V. Yasinsky)

7 Two points on a circle are joined by a broken line shorter than the diameter of the circle. Prove that there exists a diameter which does not intersect this broken line.
(Folklor)
8 Let M be the midpoint of the chord $A B$ of a circle centered at O. Point K is symmetric to M with respect to O, and point P is chosen arbitrarily on the circle. Let Q be the intersection of the line perpendicular to $A B$ through A and the line perpendicular to $P K$ through P. Let H be the projection of P onto $A B$. Prove that $Q B$ bisects $P H$.
(Tran Quang Hung)

- \quad grade 9

1 Let $A B C D$ be a cyclic quadrilateral. Prove that $A C>B D$ if and only if $(A D-B C)(A B-C D)>$ 0.
(V. Yasinsky)

2 In a quadrilateral $A B C D$ angles A and C are right. Two circles with diameters $A B$ and $C D$ meet at points X and Y. Prove that line $X Y$ passes through the midpoint of $A C$.
(F. Nilov)

3 An acute angle A and a point E inside it are given. Construct points B, C on the sides of the angle such that E is the center of the Euler circle of triangle $A B C$.

(E. Diomidov)

4 Let H be the orthocenter of a triangle $A B C$. Given that H lies on the incircle of $A B C$, prove that three circles with centers A, B, C and radii $A H, B H, C H$ have a common tangent.
(Mahdi Etesami Fard)
5 In triangle $A B C \angle B=60^{\circ}, O$ is the circumcenter, and L is the foot of an angle bisector of angle B. The circumcirle of triangle $B O L$ meets the circumcircle of $A B C$ at point $D \neq B$. Prove that $B D \perp A C$.
(D. Shvetsov)

6 Let I be the incenter of triangle $A B C$, and M, N be the midpoints of arcs $A B C$ and $B A C$ of its circumcircle. Prove that points M, I, N are collinear if and only if $A C+B C=3 A B$.
(A. Polyansky)

7 Nine circles are drawn around an arbitrary triangle as in the figure. All circles tangent to the same side of the triangle have equal radii. Three lines are drawn, each one connecting one of the triangle's vertices to the center of one of the circles touching the opposite side, as in the figure. Show that the three lines are concurrent.

(N. Beluhov)

8 A convex polygon P lies on a flat wooden table. You are allowed to drive some nails into the table. The nails must not go through P, but they may touch its boundary. We say that a set of nails blocks P if the nails make it impossible to move P without lifting it off the table. What is the minimum number of nails that suffices to block any convex polygon P ?
(N. Beluhov, S. Gerdgikov)

- \quad grade 10

1 The vertices and the circumcenter of an isosceles triangle lie on four different sides of a square. Find the angles of this triangle.
(I. Bogdanov, B. Frenkin)

2 A circle, its chord $A B$ and the midpoint W of the minor arc $A B$ are given. Take an arbitrary point C on the major arc $A B$. The tangent to the circle at C meets the tangents at A and B at points
X and Y respectively. Lines $W X$ and WY meet AB at points N and M respectively. Prove that the length of segment $N M$ does not depend on point C.

(A. Zertsalov, D. Skrobot)

3 Do there exist convex polyhedra with an arbitrary number of diagonals (a diagonal is a segment joining two vertices of a polyhedron and not lying on the surface of this polyhedron)?
(A. Blinkov)
$4 \quad$ Let $A B C$ be a fixed triangle in the plane. Let D be an arbitrary point in the plane. The circle with center D, passing through A, meets $A B$ and $A C$ again at points A_{b} and A_{c} respectively. Points B_{a}, B_{c}, C_{a} and C_{b} are defined similarly. A point D is called good if the points $A_{b}, A_{c}, B_{a}, B_{c}, C_{a}$, and C_{b} are concyclic. For a given triangle $A B C$, how many good points can there be?
(A. Garkavyj, A. Sokolov)

5 The altitude from one vertex of a triangle, the bisector from the another one and the median from the remaining vertex were drawn, the common points of these three lines were marked, and after this everything was erased except three marked points. Restore the triangle. (For every two erased segments, it is known which of the three points was their intersection point.)

(A. Zaslavsky)

6 The incircle of a non-isosceles triangle $A B C$ touches $A B$ at point C^{\prime}. The circle with diameter $B C^{\prime}$ meets the incircle and the bisector of angle B again at points A_{1} and A_{2} respectively. The circle with diameter $A C^{\prime}$ meets the incircle and the bisector of angle A again at points B_{1} and B_{2} respectively. Prove that lines $A B, A_{1} B_{1}, A_{2} B_{2}$ concur.

(E. H. Garsia)

7 Prove that the smallest dihedral angle between faces of an arbitrary tetrahedron is not greater than the dihedral angle between faces of a regular tetrahedron.

(S. Shosman, O. Ogievetsky)

8 Given is a cyclic quadrilateral $A B C D$. The point L_{a} lies in the interior of $B C D$ and is such that its distances to the sides of this triangle are proportional to the lengths of corresponding sides. The points L_{b}, L_{c}, and L_{d} are defined analogously. Given that the quadrilateral $L_{a} L_{b} L_{c} L_{d}$ is cyclic, prove that the quadrilateral $A B C D$ has two parallel sides.
(N. Beluhov)

