Art of Problem Solving

AoPS Community

Spain Mathematical Olympiad 1991

www.artofproblemsolving.com/community/c691457
by parmenides51, elegant

- Day 1

1 In the coordinate plane, consider the set of all segments of integer lengths whose endpoints have integer coordinates. Prove that no two of these segments form an angle of 45°. Are there such segments in coordinate space?

2 Given two distinct elements $a, b \in\{-1,0,1\}$, consider the matrix A.
Find a subset S of the set of the rows of A, of minimum size, such that every other row of A is a linear combination of the rows in S with integer coefficients.

3 What condition must be satisfied by the coefficients u, v, w if the roots of the polynomial $x^{3}-$ $u x^{2}+v x-w$ are the sides of a triangle

- Day 2

4 The incircle of $A B C$ touches the sides $B C, C A, A B$ at $A^{\prime}, B^{\prime}, C^{\prime}$ respectively. The line $A^{\prime} C^{\prime}$ meets the angle bisector of $\angle A$ at D. Find $\angle A D C$.

5 For a positive integer n, let $s(n)$ denote the sum of the binary digits of n. Find the sum $s(1)+$ $s(2)+s(3)+\ldots+s\left(2^{k}\right)$ for each positive integer k.

6 Find the integer part of $\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{1000}}$

