

AoPS Community

1991 Spain Mathematical Olympiad

Spain Mathematical Olympiad 1991

www.artofproblemsolving.com/community/c691457 by parmenides51, elegant

-	Day 1
1	In the coordinate plane, consider the set of all segments of integer lengths whose endpoints have integer coordinates. Prove that no two of these segments form an angle of 45^{o} . Are there such segments in coordinate space?
2	Given two distinct elements $a, b \in \{-1, 0, 1\}$, consider the matrix A . Find a subset S of the set of the rows of A , of minimum size, such that every other row of A is a linear combination of the rows in S with integer coefficients.
3	What condition must be satisfied by the coefficients u, v, w if the roots of the polynomial $x^3 - ux^2 + vx - w$ are the sides of a triangle
_	Day 2
4	The incircle of <i>ABC</i> touches the sides <i>BC</i> , <i>CA</i> , <i>AB</i> at <i>A'</i> , <i>B'</i> , <i>C'</i> respectively. The line <i>A'C'</i> meets the angle bisector of $\angle A$ at <i>D</i> . Find $\angle ADC$.
5	For a positive integer n , let $s(n)$ denote the sum of the binary digits of n . Find the sum $s(1) + s(2) + s(3) + + s(2^k)$ for each positive integer k .
6	Find the integer part of $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{1000}}$

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱