Art of Problem Solving

AoPS Community

Olympic Revenge 2015

www.artofproblemsolving.com/community/c691593
by proglote
$1 \quad$ For $n \in \mathbb{N}$, let $P(n)$ denote the product of distinct prime factors of n, with $P(1)=1$. Show that for any $a_{0} \in \mathbb{N}$, if we define a sequence $a_{k+1}=a_{k}+P\left(a_{k}\right)$ for $k \geq 0$, there exists some $k \in \mathbb{N}$ with $a_{k} / P\left(a_{k}\right)=2015$.
$2 \quad$ Given $v=(a, b, c, d) \in \mathbb{N}^{4}$, let $\Delta^{1}(v)=(|a-b|,|b-c|,|c-d|,|d-a|)$ and $\Delta^{k}(v)=\Delta\left(\Delta^{k-1}(v)\right)$ for $k>1$. Define $f(v)=\min \left\{k \in \mathbb{N}: \Delta^{k}(v)=(0,0,0,0)\right\}$ and $\max (v)=\max \{a, b, c, d\}$. Show that $f(v)<1000 \log \max (v)$ for all sufficiently large v and $f(v)>0.001 \log \max (v)$ for infinitely many v.
$3 \quad$ For every $n \in \mathbb{N}$, there exist integers k such that $n \mid k$ and k contains only zeroes and ones in its decimal representation. Let $f(n)$ denote the least possible number of ones in any such k. Determine whether there exists a constant C such that $f(n)<C$ for all $n \in \mathbb{N}$.

4 Consider a game in the integer points of the real line, where an Angel tries to escape from a Devil. A positive integer k is chosen, and the Angel and the Devil take turns playing. Initially, no point is blocked. The Angel, in point A, can move to any point P such that $|A P| \leq k$, as long as P is not blocked. The Devil may block an arbitrary point. The Angel loses if it cannot move and wins if it does not lose in finitely many turns. Let $f(k)$ denote the least number of rounds the Devil takes to win. Prove that

$$
0.5 k \log _{2}(k)(1+o(1)) \leq f(k) \leq k \log _{2}(k)(1+o(1))
$$

Note: $a(x)=b(x)(1+o(1))$ if $\lim _{x \rightarrow \infty} \frac{b(x)}{a(x)}=1$.
5 Given a triangle $A_{1} A_{2} A_{3}$, let a_{i} denote the side opposite to A_{i}, where indices are taken modulo 3. Let $D_{1} \in a_{1}$. For $D_{i} \in A_{i}$, let ω_{i} be the incircle of the triangle formed by lines $a_{i}, a_{i+1}, A_{i} D_{i}$, and $D_{i+1} \in a_{i+1}$ with $A_{i+1} D_{i+1}$ tangent to ω_{i}. Show that the set $\left\{D_{i}: i \in \mathbb{N}\right\}$ is finite.

