

AoPS Community

1988 Spain Mathematical Olympiad

www.artofproblemsolving.com/community/c691930 by parmenides51

-	Day 1
1	A sequence of integers $(x_n)_{n=1}^{\infty}$ satisfies $x_1 = 1$ and $x_n < x_{n+1} \le 2n$ for all n . Show that for every positive integer k there exist indices r, s such that $x_r - x_s = k$.
2	We choose $n > 3$ points on a circle and number them 1 to n in some order. We say that two non-adjacent points A and B are related if, in one of the arcs AB , all the points are marked with numbers less than those at A, B . Show that the number of pairs of related points is exactly $n-3$.
3	Prove that if one of the numbers $25x + 31y$, $3x + 7y$ (where $x, y \in Z$) is a multiple of 41, then so is the other.
-	Day 2
4	The Fibonacci sequence is given by $a_1 = 1$, $a_2 = 2$ and $a_{n+1} = a_n + a_{n-1}$ for $n > 1$. Express a_{2n} in terms of only a_{n-1}, a_n, a_{n+1} .
5	A well-known puzzle asks for a partition of a cross into four parts which are to be reassembled into a square. One solution is exhibited on the picture. https://cdn.artofproblemsolving.com/attachments/9/1/3b8990baf5e37270c640e280c479b7880 png Show that there are infinitely many solutions. (Some solutions split the cross into four equal parts!)
6	For all integral values of parameter t , find all integral solutions (x, y) of the equation
	$y^{2} = x^{4} - 22x^{3} + 43x^{2} + 858x + t^{2} + 10452(t+39)$

AoPS Online AoPS Academy AoPS Catery

Art of Problem Solving is an ACS WASC Accredited School.

1