## AoPS Community

## Spain Mathematical Olympiad 1988

www.artofproblemsolving.com/community/c691930
by parmenides51

- Day 1

1 A sequence of integers $\left(x_{n}\right)_{n=1}^{\infty}$ satisfies $x_{1}=1$ and $x_{n}<x_{n+1} \leq 2 n$ for all $n$. Show that for every positive integer $k$ there exist indices $r, s$ such that $x_{r}-x_{s}=k$.

2 We choose $n>3$ points on a circle and number them 1 to $n$ in some order. We say that two non-adjacent points $A$ and $B$ are related if, in one of the arcs $A B$, all the points are marked with numbers less than those at $A, B$. Show that the number of pairs of related points is exactly $n-3$.

3 Prove that if one of the numbers $25 x+31 y, 3 x+7 y$ (where $x, y \in Z$ ) is a multiple of 41 , then so is the other.

- Day 2

4 The Fibonacci sequence is given by $a_{1}=1, a_{2}=2$ and $a_{n+1}=a_{n}+a_{n-1}$ for $n>1$. Express $a_{2 n}$ in terms of only $a_{n-1}, a_{n}, a_{n+1}$.

5 A well-known puzzle asks for a partition of a cross into four parts which are to be reassembled into a square. One solution is exhibited on the picture. https://cdn.artofproblemsolving.com/attachments/9/1/3b8990baf5e37270c640e280c479b788d989k png
Show that there are infinitely many solutions. (Some solutions split the cross into four equal parts!)

6 For all integral values of parameter $t$, find all integral solutions $(x, y)$ of the equation

$$
y^{2}=x^{4}-22 x^{3}+43 x^{2}+858 x+t^{2}+10452(t+39)
$$

