## AoPS Community

## Spain Mathematical Olympiad 1990

www.artofproblemsolving.com/community/c691952
by parmenides51, elegant

- Day 1

1 Prove that $\sqrt{x}+\sqrt{y}+\sqrt{x y}$ is equal to $\sqrt{x}+\sqrt{y+x y+2 y \sqrt{x}}$
and compare the numbers $\sqrt{3}+\sqrt{10+2 \sqrt{3}}$ and $\sqrt{5+\sqrt{22}}+\sqrt{8-\sqrt{22}+2 \sqrt{15-3 \sqrt{22}}}$.
2 Every point of the plane is painted with one of three colors. Can we always find two points a distance 1 cm apart which are of the same color?

3 Prove that $\left\lfloor(4+\sqrt{1} 1)^{n}\right\rfloor$ is odd for every natural number n .

- Day 2

4 Prove that the sum $\sqrt[3]{\frac{a+1}{2}+\frac{a+3}{6} \sqrt{\frac{4 a+3}{3}}}+\sqrt[3]{\frac{a+1}{2}-\frac{a+3}{6} \sqrt{\frac{4 a+3}{3}}}$
is independent of $a$ for $a \geq-\frac{3}{4}$ and evaluate it.
5 On the sides $B C, C A$ and $A B$ of a triangle $A B C$ of area $S$ are taken points $A^{\prime}, B^{\prime}, C^{\prime}$ respectively such that $A C^{\prime} / A B=B A^{\prime} / B C=C B^{\prime} / C A=p$, where $0<p<1$ is variable.
(a) Find the area of triangle $A^{\prime} B^{\prime} C^{\prime}$ in terms of $p$.
(b) Find the value of $p$ which minimizes this area.
(c) Find the locus of the intersection point $P$ of the lines through $A^{\prime}$ and $C^{\prime}$ parallel to $A B$ and $A C$ respectively.

6 There are $n$ points in the plane so that no two pairs are equidistant. Each point is connected to the nearest point by a segment. Show that no point is connected to more than five points.

