

AoPS Community

1990 Spain Mathematical Olympiad

Spain Mathematical Olympiad 1990

www.artofproblemsolving.com/community/c691952 by parmenides51, elegant

-	Day 1
1	Prove that $\sqrt{x} + \sqrt{y} + \sqrt{xy}$ is equal to $\sqrt{x} + \sqrt{y + xy + 2y\sqrt{x}}$
	and compare the numbers $\sqrt{3} + \sqrt{10 + 2\sqrt{3}}$ and $\sqrt{5 + \sqrt{22}} + \sqrt{8 - \sqrt{22} + 2\sqrt{15 - 3\sqrt{22}}}$.
2	Every point of the plane is painted with one of three colors. Can we always find two points a distance 1 cm apart which are of the same color?
3	Prove that $\lfloor (4 + \sqrt{11})^n \rfloor$ is odd for every natural number n.
-	Day 2
4	Prove that the sum $\sqrt[3]{\frac{a+1}{2} + \frac{a+3}{6}\sqrt{\frac{4a+3}{3}}} + \sqrt[3]{\frac{a+1}{2} - \frac{a+3}{6}\sqrt{\frac{4a+3}{3}}}$ is independent of a for $a \ge -\frac{3}{4}$ and evaluate it.
5	 On the sides BC, CA and AB of a triangle ABC of area S are taken points A', B', C' respectively such that AC'/AB = BA'/BC = CB'/CA = p, where 0 (a) Find the area of triangle A'B'C' in terms of p. (b) Find the value of p which minimizes this area. (c) Find the locus of the intersection point P of the lines through A' and C' parallel to AB and AC respectively.
6	There are n points in the plane so that no two pairs are equidistant. Each point is connected to the nearest point by a segment. Show that no point is connected to more than five points.

AoPS Online 🕸 AoPS Academy 🗿 AoPS 🍪

1

Art of Problem Solving is an ACS WASC Accredited School.