AoPS Community

Spain Mathematical Olympiad 1985

www.artofproblemsolving.com/community/c692205
by parmenides51

- Day 1

1 Let $f: P \rightarrow P$ be a bijective map from a plane P to itself such that:
(i) $f(r)$ is a line for every line r,
(ii) $f(r)$ is parallel to r for every line r.

What possible transformations can f be?
2 Determine if there exists a subset E of $Z \times Z$ with the properties:
(i) E is closed under addition,
(ii) E contains $(0,0)$,
(iii) For every $(a, b) \neq(0,0), E$ contains exactly one of (a, b) and $-(a, b)$.

Remark: We define $(a, b)+\left(a^{\prime}, b^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}\right)$ and $-(a, b)=(-a,-b)$.
3 Solve the equation $\tan ^{2} 2 x+2 \tan 2 x \tan 3 x=1$
4 Prove that for each positive integer k there exists a triple (a, b, c) of positive integers such that $a b c=k(a+b+c)$. In all such cases prove that $a^{3}+b^{3}+c^{3}$ is not a prime.

- Day 2

5 Find the equation of the circle in the complex plane determined by the roots of the equation $z^{3}+(-1+i) z^{2}+(1-i) z+i=0$.

6 Let $O X$ and $O Y$ be non-collinear rays. Through a point A on $O X$, draw two lines r_{1} and r_{2} that are antiparallel with respect to $\angle X O Y$. Let r_{1} cut $O Y$ at M and r_{2} cut $O Y$ at N. (Thus, $\angle O A M=\angle O N A$). The bisectors of $\angle A M Y$ and $\angle A N Y$ meet at P. Determine the location of P.
$7 \quad$ Find the values of p for which the equation $x^{5}-p x-1=0$ has two roots r and s which are the roots of equation $x^{2}-a x+b=0$ for some integers a, b.

8 A square matrix is sum-magic if the sum of all elements in each row, column and major diagonal is constant. Similarly, a square matrix is product-magic if the product of all elements in each row, column and major diagonal is constant.
Determine if there exist 3×3 matrices of real numbers which are both sum-magic and productmagic.

