

AoPS Community

Spain Mathematical Olympiad 1985

www.artofproblemsolving.com/community/c692205 by parmenides51

-	Day 1
1	Let $f : P \to P$ be a bijective map from a plane <i>P</i> to itself such that: (i) $f(r)$ is a line for every line <i>r</i> , (ii) $f(r)$ is parallel to <i>r</i> for every line <i>r</i> . What possible transformations can <i>f</i> be?
2	Determine if there exists a subset E of $Z \times Z$ with the properties: (i) E is closed under addition, (ii) E contains $(0,0)$, (iii) For every $(a,b) \neq (0,0)$, E contains exactly one of (a,b) and $-(a,b)$.
	Remark: We define $(a, b) + (a', b') = (a + a', b + b')$ and $-(a, b) = (-a, -b)$.
3	Solve the equation $tan^22x + 2tan2xtan3x = 1$
4	Prove that for each positive integer k there exists a triple (a, b, c) of positive integers such that $abc = k(a + b + c)$. In all such cases prove that $a^3 + b^3 + c^3$ is not a prime.
-	Day 2
5	Find the equation of the circle in the complex plane determined by the roots of the equation $z^3 + (-1+i)z^2 + (1-i)z + i = 0.$
6	Let OX and OY be non-collinear rays. Through a point A on OX , draw two lines r_1 and r_2 that are antiparallel with respect to $\angle XOY$. Let r_1 cut OY at M and r_2 cut OY at N . (Thus, $\angle OAM = \angle ONA$). The bisectors of $\angle AMY$ and $\angle ANY$ meet at P . Determine the location of P .
7	Find the values of p for which the equation $x^5 - px - 1 = 0$ has two roots r and s which are the roots of equation $x^2 - ax + b = 0$ for some integers a, b .
8	A square matrix is sum-magic if the sum of all elements in each row, column and major diag- onal is constant. Similarly, a square matrix is product-magic if the product of all elements in each row, column and major diagonal is constant. Determine if there exist 3×3 matrices of real numbers which are both sum-magic and product- magic.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱