AoPS Community

Spain Mathematical Olympiad 1986

www.artofproblemsolving.com/community/c692206
by parmenides51, SMOJ

- Day 1

1 Define the distance between real numbers x and y by $d(x, y)=\sqrt{([x]-[y])^{2}+(\{x\}-\{y\})^{2}}$. Determine (as a union of intervals) the set of real numbers whose distance from $3 / 2$ is less than 202/100.

2 A segment d is said to divide a segment s if there is a natural number n such that $s=n d=$ $d+d+\ldots+d$ (n times).
(a) Prove that if a segment d divides segments s and s^{\prime} with $s<s^{\prime}$, then it also divides their difference $s^{\prime}-s$.
(b) Prove that no segment divides the side s and the diagonal s^{\prime} of a regular pentagon (consider the pentagon formed by the diagonals of the given pentagon without explicitly computing the ratios).
$3 \quad$ Find all natural numbers n such that $5^{n}+3$ is a power of 2

- Day 2

4 Denote by $m(a, b)$ the arithmetic mean of positive real numbers a, b. Given a positive real function g having positive derivatives of the first and second order, define $\mu(a, b)$ the mean value of a and b with respect to g by $2 g(\mu(a, b))=g(a)+g(b)$. Decide which of the two mean values m and μ is larger.
$5 \quad$ Consider the curve Γ defined by the equation $y^{2}=x^{3}+b x+b^{2}$, where b is a nonzero rational constant. Inscribe in the curve Γ a triangle whose vertices have rational coordinates.

6 Evaluate

$$
\prod_{k=1}^{14} \cos \left(\frac{k \pi}{15}\right)
$$

