AoPS Community

Spain Mathematical Olympiad 1987

www.artofproblemsolving.com/community/c692207
by parmenides51

- Day 1

1 Let a, b, c be the side lengths of a scalene triangle and let O_{a}, O_{b} and O_{c} be three concentric circles with radii a, b and c respectively.
(a) How many equilateral triangles with different areas can be constructed such that the lines containing the sides are tangent to the circles?
(b) Find the possible areas of such triangles.

2 Show that for each natural number $n>11 \cdot \sqrt{\binom{n}{1}}+2 \cdot \sqrt{\binom{n}{2}}+\ldots+n \cdot \sqrt{\binom{n}{n}}<\sqrt{2^{n-1} n^{3}}$
3 A given triangle is divided into n triangles in such a way that any line segment which is a side of a tiling triangle is either a side of another tiling triangle or a side of the given triangle. Let s be the total number of sides and v be the total number of vertices of the tiling triangles (counted without multiplicity).
(a) Show that if n is odd then such divisions are possible, but each of them has the same number v of vertices and the same number s of sides. Express v and s as functions of n.
(b) Show that, for n even, no such tiling is possible

- Day 2

4 If a and b are distinct real numbers, solve the systems
(a) $\left\{\begin{array}{l}x+y=1 \\ (a x+b y)^{2} \leq a^{2} x+b^{2} y\end{array}\right.$
and (b) $\left\{\begin{array}{l}x+y=1 \\ (a x+b y)^{4} \leq a^{4} x+b^{4} y\end{array}\right.$

5 In a triangle $A B C, D$ lies on $A B, E$ lies on $A C$ and $\angle A B E=30^{\circ}, \angle E B C=50^{\circ}, \angle A C D=20^{\circ}$, $\angle D C B=60^{\circ}$. Find $\angle E D C$.

6 For all natural numbers n, consider the polynomial $P_{n}(x)=x^{n+2}-2 x+1$.
(a) Show that the equation $P_{n}(x)=0$ has exactly one root c_{n} in the open interval $(0,1)$.
(b) Find $\lim _{n \rightarrow \infty} c_{n}$.

