AoPS Community

Mathematical Olympiad 2018

www.artofproblemsolving.com/community/c692750
by cjquines0

1 In triangle $A B C$ with $\angle A B C=60^{\circ}$ and $5 A B=4 B C$, points D and E are the feet of the altitudes from B and C, respectively. M is the midpoint of $B D$ and the circumcircle of triangle $B M C$ meets line $A C$ again at N. Lines $B N$ and $C M$ meet at P. Prove that $\angle E D P=90^{\circ}$.

2 Suppose a_{1}, a_{2}, \ldots is a sequence of integers, and d is some integer. For all natural numbers n,
(i) $\left|a_{n}\right|$ is prime;
(ii) $a_{n+2}=a_{n+1}+a_{n}+d$.

Show that the sequence is constant.
3 Let n be a positive integer. An $n \times n$ matrix (a rectangular array of numbers with n rows and n columns) is said to be a platinum matrix if:

- the n^{2} entries are integers from 1 to n;
- each row, each column, and the main diagonal (from the upper left corner to the lower right corner) contains each integer from 1 to n exactly once; and
- there exists a collection of n entries containing each of the numbers from 1 to n, such that no two entries lie on the same row or column, and none of which lie on the main diagonal of the matrix.

Determine all values of n for which there exists an $n \times n$ platinum matrix.
4 Determine all ordered pairs (x, y) of nonnegative integers that satisfy the equation

$$
3 x^{2}+2 \cdot 9^{y}=x\left(4^{y+1}-1\right) .
$$

