

AoPS Community

Mathematical Reflections - Geometry Olympiad

olympiad level geometry problems from Mathematical Reflections

www.artofproblemsolving.com/community/c695235 by parmenides51

O1 A circle centered at *O* is tangent to all sides of the convex quadrilateral *ABCD*. The rays *BA* and *CD* intersect at *K*, the rays *AD* and *BC* intersect at *L*. The points *X*, *Y* are considered on the line segments *OA*, *OC*, respectively. Prove that $\angle XKY = \frac{1}{2} \angle AKC$ if and only if $\angle XLY = \frac{1}{2} \angle ALC$.

Proposed by Pavlo Pylyavskyy, MIT

O4 Let AB be a diameter of the circle Γ and let C be a point on the circle, different from A and B. Denote by D the projection of C on AB and let ω be a circle tangent to AD, CD, and Γ , touching Γ at X. Prove that the angle bisectors of $\angle AXB$ and $\angle ACD$ meet on AB.

Proposed by Liubomir Chiriac, Princeton

07 In the convex hexagon ABCDEF the following equalities hold: AD = BC + EF, BE = AF + CD, CF = AB + DE. Prove that $\frac{AB}{DE} = \frac{CD}{AF} = \frac{EF}{BC}$.

Proposed by Nairi Sedrakyan, Armenia

O13 Let ABC be a triangle and P be an arbitrary point inside the triangle. Let A', B', C', respectively, be the intersections of AP, BP, and CP with the triangles sides. Through P we draw a line perpendicular to PA that intersects BC at A_1 . We define B_1 and C_1 analogously. Let P' be the isogonal conjugate of the point P with respect to triangle A'B'C'. Show that A_1, B_1 , and C_1 lie on a line ℓ that is perpendicular to PP'.

Proposed by Khoa Lu Nguyen, Sam Houston High School, Houston, Texas.

O16 Let ABC be an acute-angled triangle. Let ω be the center of the nine point circle and let G be its centroid. Let A', B', C', A'', B'', C'' be the projections of ω and G on the corresponding sides. Prove that the perimeter of A''B''C'' is not less than the perimeter of A'B'C'.

Proposed by Iurie Boreico, student, Chiinu, Moldova

O20 The incircle of triangle *ABC* touches *AC* at *E* and *BC* at *D*. The excircle corresponding to *A* touches the side *BC* at A_1 and the extensions of *AB*, *AC* at C_1 and B_1 , respectively. Let $DE \cap A_1B_1 = L$. Prove that *L* lies on the circumcircle of triangle A_1BC_1 .

Liubomir Chiriac, Princeton University

AoPS Community

Mathematical Reflections - Geometry Olympiad

O22 Consider a triangle ABC and points P, Q in its plane. Let A_1, B_1, C_1 and A_2, B_2, C_2 be cevians in this triangle. Denote by U, V, W the second intersections of circles $(AA_1A_2), (BB_1B_2), (CC_1C_2)$ with circle (ABC), respectively. Let X be the point of intersection of AU with BC. Similarly define Y and Z. Prove that X, Y, Z are collinear.

Khoa Lu Nguyen, M.I.T and Ivan Borsenco, University of Texas at Dallas

O23 Let ABC be a triangle and let A_1, B_1, C_1 be the points where the angle bisectors of A, B and C meet the circumcircle of triangle ABC, respectively. Let M_a be the midpoint of the segment connecting the intersections of segments A_1B_1 and A_1C_1 with segment BC. Define M_b and M_c analogously. Prove that AM_a, BM_b , and CM_c are concurrent if and only if ABC is isosceles.

Dr. Zuming Feng, Phillips Exeter Academy, New Hampshire

O26 Consider a triangle ABC and let O be its circumcenter. Denote by D the foot of the altitude from A and by E the intersection of AO and BC. Suppose tangents to the circumcircle of triangle ABC at B and C intersect at T and that AT intersects this circumcircle at F. Prove that the circumcircles of triangles DEF and ABC are tangent.

Proposed by Ivan Borsenco, University of Texas at Dallas

O33 Let *ABC* be a triangle with cicrumcenter *O* and incenter *I*. Consider a point *M* lying on the small arc *BC*. Prove that $AM + 2OI \ge MB + MC \ge MA - 2OI$

Proposed by Hung Quang Tran, Ha Noi University, Vietnam

AoPS Online AoPS Academy AoPS Academy