Art of Problem Solving

AoPS Community

Hong Kong Team Selection Test 2019

www.artofproblemsolving.com/community/c701376
by HKIS200543, Functional, Neothehero, IndoMathXdZ, psi241, CantonMathGuy

Test 1 August 18, 2018

1 Let a be a real number. Suppose the function $f(x)=\frac{a}{x-1}+\frac{1}{x-2}+\frac{1}{x-6}$ defined in the interval $3<x<5$ attains its maximum at $x=4$. Find the value of a.

2 A circle is circumscribed around an isosceles triangle whose two base angles are equal to x°. Two points are chosen independently and randomly on the circle, and a chord is drawn between them. The probability that the chord intersects the triangle is $\frac{14}{25}$. Find the sum of the largest and smallest possible value of x.

3 Find an integral solution of the equation

$$
\left\lfloor\frac{x}{1!}\right\rfloor+\left\lfloor\frac{x}{2!}\right\rfloor+\left\lfloor\frac{x}{3!}\right\rfloor+\cdots+\left\lfloor\frac{x}{10!}\right\rfloor=2019 .
$$

(Note $\lfloor u\rfloor$ stands for the greatest integer less than or equal to u.)
4 Let $A B C$ be an acute-angled triangle such that $\angle A C B=45^{\circ}$. Let G be the point of intersection of the three medians and let O be the circumcentre. Suppose $O G=1$ and $O G \| B C$. Determine the length of the segment $B C$.

5 Is it is possible to choose 24 distinct points in the space such that no three of them lie on the same line and choose 2019 distinct planes in a way that each plane passes through at least 3 of the chosen points and each triple belongs to one of the chosen planes?

6 If $57 a+88 b+125 c \geq 1148$, where $a, b, c>0$, what is the minimum value of

$$
a^{3}+b^{3}+c^{3}+5 a^{2}+5 b^{2}+5 c^{2} ?
$$

Test 2 October 20, 2018

1 Determine all sequences p_{1}, p_{2}, \ldots of prime numbers for which there exists an integer k such that the recurrence relation

$$
p_{n+2}=p_{n+1}+p_{n}+k
$$

holds for all positive integers n.

AoPS Community

2 Let p be a prime number greater than 10. Prove that there exist positive integers m and n such that $m+n<p$ and $5^{m} 7^{n}-1$ is divisible by p.
$3 \quad$ Let Γ_{1} and Γ_{2} be two circles with different radii, with Γ_{1} the smaller one. The two circles meet at distinct points A and $B . C$ and D are two points on the circles Γ_{1} and Γ_{2}, respectively, and such that A is the midpoint of $C D . C B$ is extended to meet Γ_{2} at F, while $D B$ is extended to meet Γ_{1} at E. The perpendicular bisector of $C D$ and the perpendicular bisector of $E F$ meet at P.
(a) Prove that $\angle E P F=2 \angle C A E$.
(b) Prove that $A P^{2}=C A^{2}+P E^{2}$.

4 We choose 100 points in the coordinate plane. Let N be the number of triples (A, B, C) of distinct chosen points such that A and B have the same y-coordinate, and B and C have the same x-coordinate. Find the greatest value that N can attain considering all possible ways to choose the points.

Note The CHKMO and APMO are used as selection tests in between these Test 2 and 3 .
Test 3 April 28, 2019
$1 \quad$ Let $\mathbb{Q}_{>0}$ denote the set of all positive rational numbers. Determine all functions $f: \mathbb{Q}_{>0} \rightarrow \mathbb{Q}>0$ satisfying

$$
f\left(x^{2} f(y)^{2}\right)=f(x)^{2} f(y)
$$

for all $x, y \in \mathbb{Q}>0$
2 Let $A B C$ be a triangle with $A B=A C$, and let M be the midpoint of $B C$. Let P be a point such that $P B<P C$ and $P A$ is parallel to $B C$. Let X and Y be points on the lines $P B$ and $P C$, respectively, so that B lies on the segment $P X, C$ lies on the segment $P Y$, and $\angle P X M=$ $\angle P Y M$. Prove that the quadrilateral $A P X Y$ is cyclic.

3 Let n be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n+1$ squares in a row, numbered 0 to n from left to right. Initially, n stones are put into square 0 , and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with k stones, takes one of these stones and moves it to the right by at most k squares (the stone should say within the board). Sisyphus' aim is to move all n stones to square n.
Prove that Sisyphus cannot reach the aim in less than

$$
\left\lceil\frac{n}{1}\right\rceil+\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{n}{3}\right\rceil+\cdots+\left\lceil\frac{n}{n}\right\rceil
$$

turns. (As usual, $\lceil x\rceil$ stands for the least integer not smaller than x.)
Test 4 May 1, 2019

1 Determine all pairs (n, k) of distinct positive integers such that there exists a positive integer s for which the number of divisors of $s n$ and of $s k$ are equal.

2 Let $n \geqslant 3$ be an integer. Prove that there exists a set S of $2 n$ positive integers satisfying the following property: For every $m=2,3, \ldots, n$ the set S can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality m.

3 Find the maximal value of

$$
S=\sqrt[3]{\frac{a}{b+7}}+\sqrt[3]{\frac{b}{c+7}}+\sqrt[3]{\frac{c}{d+7}}+\sqrt[3]{\frac{d}{a+7}}
$$

where a, b, c, d are nonnegative real numbers which satisfy $a+b+c+d=100$.
Proposed by Evan Chen, Taiwan

